Présentation

Article

1 - CONTEXTE

2 - EFFET MAGNÉTOCALORIQUE

3 - APPAREILS DE RÉFRIGÉRATION MAGNÉTIQUE

4 - STRUCTURE GÉNÉRALE D'UN APPAREIL ROTATIF DE RÉFRIGÉRATION

5 - SYSTÈME INDUSTRIALISABLE

6 - VALIDATIONS

7 - PERSPECTIVES D'ÉVOLUTION DES SYSTÈMES VERS DES PUISSANCES PLUS ÉLEVÉES

8 - CONCLUSIONS

Article de référence | Réf : BE9830 v1

Système industrialisable
Systèmes de réfrigération magnétique

Auteur(s) : Christian MULLER, Guillaume BRUMPTER, Lhassan ELOUAD, Jean-Baptiste POLMARD

Date de publication : 10 juil. 2014

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les systèmes de réfrigération magnétique autour de la température ambiante sont une solution alternative à la réfrigération par gaz compressé. Ces appareils ont atteint le stade de l'industrialisation, préalable à une prochaine mise sur le marché pour des puissances aujourd'hui limitées. La réfrigération, basée sur la compression/détente, est confrontée à des environnements contraignants sans véritable solution alternative, alors que le froid magnétique peut apporter des solutions crédibles au remplacement des compresseurs. Après un rappel du contexte et de l'effet magnétocalorique, l'article se focalise sur les spécifications marchés, les contraintes d'industrialisation et de coûts, et les prototypes rotatifs industrialisés et leurs composants. Des perspectives d'évolution vers des puissances plus élevées sont avancées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

MAGNETIC R

Les systèmes de réfrigération magnétique autour de la température ambiante sont une solution alternative à la réfrigération par gaz compressé. Ces appareils ont atteint le stade de l'industrialisation, préalable à une prochaine mise sur le marché pour des puissances aujourd'hui limitées (voir cependant en fin d'article ,l'évolution possible) La réfrigération, basée sur la compression/détente, est confrontée à des environnements contraignants sans véritable solution alternative, alors que le Froid magnétique peut apporter des solutions crédibles au remplacement des compresseurs. Après un rappel du contexte et de l'effet magnétocalorique, l'article se focalise sur les spécifications marchés, sur les contraintes d'industrialisation et de coûts et sur les prototypes rotatifs industrialisés et leurs composants. L'article finit par les perspectives d'évolution vers des puissances plus élevées.

Auteur(s)

  • Christian MULLER : Directeur de recherche dans le domaine du froid magnétique - Président de la société Cooltech Applications

  • Guillaume BRUMPTER : Ingénieur conception en systèmes de froid magnétique - Ingénieur en mécanique de l'ENIM,Cooltech Applications

  • Lhassan ELOUAD : Docteur en sciences - Ingénieur de recherches pour les sciences fondamentales - Ingénieur essais, Cooltech Applications

  • Jean-Baptiste POLMARD : Ingénieur en mécanique énergie – UHP Nancy 1 - Ingénieur de recherches - Ingénieur essais, Cooltech Applications

INTRODUCTION

Le domaine de la réfrigération et de la climatisation recouvre des secteurs d'applications larges, multiples et diversifiés (tant industriels que grand public). C'est également un marché fortement porteur, en progression régulière de 2 à 4 % par an.

Le froid, nécessaire à l'économie et à la société moderne pour l'alimentation, la santé et le confort (réfrigération, climatisation...) est majoritairement produit par des systèmes basés sur le principe thermodynamique classique de compression et de détente d'un fluide.

Cette technologie, datant des années 1880, est mature et bien maîtrisée. Elle est régulièrement confrontée à un environnement réglementaire et sociétal qui devient très contraignant. (voir articles [BE 9 720] et [BE 9 723]).

Le froid magnétique peut apporter des réponses crédibles aux industriels et utilisateurs en recherche de solutions alternatives aux systèmes de compression de gaz (compresseurs à gaz actuels).

Les systèmes de réfrigération magnétique autour de la température ambiante ont atteint le stade du développement industriel.

Dates clés

1881. Découverte par Warburg de l'effet magnétocalorique. Propriétés des matériaux = variation de température sous l'action d'un champ magnétique.

1949. Prix nobel de chimie. Reconnaissance scientifique = élargissement et intérêt accru pour des travaux de recherche.

1980. Preuve du concept. Écarts de température (spans) importants et mesurés de plus de 45 oC avec du gadolinium en utilisant des aimants supraconducteurs (B > 7 T).

1994. Progression des performances des aimants permanents de type NdFeB (Néodyme Fer Bore) permettant des applications industrielles et des innovations importantes dans le froid magnétique (par exemple : B > 1,2 T avec des aimants standard).

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

applications   |   magnetic cool   |   refrigeration   |   air conditioning   |   magnetism   |   thermo-fluidics

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be9830


Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Système industrialisable

Le système étudié est issu de développements réalisés par la société Cooltech Applications pour une application industrielle.

5.1 Concept général

Dans une machine magnétocalorique rotative à deux étages, plusieurs AMR constitués de lames d'alliages ayant différentes températures de Curie et placés dans des disques (magnetocaloric blocks ) sont exposés à un champ magnétique variable généré par des aimants permanents placés sur deux rotors (permanent magnets ) (figures 17 et 18).

Un dispositif hydraulique (distributeur) non représenté déplace entre les lames de matériaux, par oscillations entretenues et synchronisées avec la magnétisation, un liquide caloporteur classique à base d'eau.

L'interface avec les sources froide et chaude de l'application (par exemple, une vitrine réfrigérée) est assurée par deux échangeurs thermiques internes (Heat Exchangers ). Un moteur électrique assure la distribution hydraulique et la rotation des deux rotors magnétiques : entrée de l'énergie nécessaire au fonctionnement de l'appareil (Electrical Power ).

Dans cet appareil (figure 18), l'un des stators constitue la source chaude et l'autre stator la source froide.

HAUT DE PAGE

5.2 Cycles magnétocaloriques AMRR

HAUT DE PAGE

5.2.1 Choix du cycle

L'exploitation directe de l'effet magnétocalorique ne permet pas d'atteindre des écarts de températures importants entre les sources chaude et froide, en particulier avec des systèmes utilisant des aimants permanents.

Deux types de cycles magnétocaloriques peuvent être exploités : le cycle AMRR (Active Magnetic Regenerator Refrigeration ) et le cycle de Carnot magnétique.

D'autres cycles thermodynamiques existent tels que le cycle d'Erikson, de Stirling, mais ils sont plus difficiles à mettre en œuvre et ils ne sont pas nécessairement plus performants.

    ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Système industrialisable
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NIELSEN (K.K.), TUSEK (J.), ENGELBRECHT (K.), SCHOPFER (S.), KITANOVSKI (A.), BAHL (C.R.H.), SMITH (A.), PRYDS (N.), POREDOS (A.) -   Review on numerical modeling of active magnetic regenerators for room temperature applications.  -  Int. J. Refrigeration, 34(3), p. 603-616 (2011).

  • (2) - PETERSEN (T.F.), PRYDS (N.), SMITH (A.), HATTEL (J.), SCHMIDT (H.), KNUDSEN (H.-J.H.) -   Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator.  -  Int. J. Refrigeration, DOI:10.1016/j.ijrefrig.2007.07.009 (2007).

  • (3) - BOUCHARD (J.) et al -   Model of a porous regenerator used for magnetic refrigeration at room temperature.  -  Int. J. Heat Mass Transfer, DOI:10.1016/j.ijheat mass transfer, 2008.08.031 (2008).

  • (4) - TAGLIAFICO (G.), SCARPA (F.), CANEPA (F.) -   A dynamic 1-D model for a reciprocating active magnetic regenerator : influence of the main working parameters.  -  Int. J. Refrigeration, 33, p. 286-293 (2010).

  • (5) - ALLAB (F.), KEDOUS-LEBOUC (A.), YONNET (J.P.), FOURNIER (J.M.) -   A magnetic field source system for magnetic refrigeration and its interaction with magnetocaloric material.  -  ...

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Froid industriel

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS