Présentation

Article

1 - RAPPELS ESSENTIELS

2 - ÉVOLUTION DES MODÈLES MATHÉMATIQUES

3 - QUELQUES MODÈLES MATHÉMATIQUES SIMPLIFIÉS

4 - MODÈLE DU CCPS

5 - MODÈLE D’INFLAMMATION DE L’UKOOA

6 - MODÈLES TEMPORELS

7 - CONCLUSION

8 - GLOSSAIRE

Article de référence | Réf : SE4021 v1

Quelques modèles mathématiques simplifiés
Évaluation des probabilités d’inflammation - Modèles mathématiques

Auteur(s) : Olivier IDDIR

Date de publication : 10 juil. 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L’évaluation des probabilités d’inflammation est une étape incontournable lors de la réalisation d’une analyse quantifiée des risques portant sur des produits inflammables. Pour ce faire, il est possible de recourir à l’utilisation de modèles mathématiques plus ou moins sophistiqués. Cette pratique tend à se démocratiser avec la réalisation de plus en plus fréquente de calculs de dispersion avec des logiciels CFD (Computational Fluid Dynamics). Cet article s’attache donc à présenter les principaux modèles mathématiques disponibles et met en lumière l’intérêt des modèles mathématiques dits temporels qui permettent de prendre en compte l’évolution au cours du temps du nuage inflammable.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Ignition probability Mathematical Models

Quantification of ignition probabilities is a fundamental step in quantitative risk analysis. To estimate these probabilities, it is possible to implement mathematical models of ranging sophistication. For flammable gas, with the increase in computational fluid dynamics (CFD) calculations, time-dependent models are more and more widely used. After basic reminders about the main mathematical models, this article focuses on time-dependent ignition models, which estimate ignition probability as a function of time.

Auteur(s)

  • Olivier IDDIR : Ingénieur Quantification des risques - Membre du réseau des experts de TechnipFMC Département Expertise et modélisation – TechnipFMC, La Défense, France

INTRODUCTION

De nombreuses installations industrielles stockent, synthétisent ou transfèrent des produits inflammables. En fonction de leurs caractéristiques d’inflammabilité, ces produits sont susceptibles de former des mélanges inflammables dans l’air. En cas d’inflammation, des phénomènes dangereux tels que l’incendie, le jet enflammé ou l’explosion peuvent survenir.

Dans le cadre d’une évaluation quantifiée des risques, il est donc nécessaire d’estimer la probabilité qu’un nuage s’enflamme au contact de sources d’inflammation. Une erreur lors de cette étape peut avoir des conséquences significatives sur les conclusions d’une analyse des risques. Il est par ailleurs important de rappeler que les analyses de risques quantifiées sont de plus en plus utilisées dans une optique de dimensionnement des installations. En d’autres termes, les installations (équipements, structures, bâtiments) sont conçues pour résister à des intensités d’agressions correspondant à une certaine fréquence.

En 2017, dans le cadre des analyses de risques quantifiées, il est possible de recourir à trois modes d’évaluation des probabilités d’inflammation :

  1. l’évaluation par banques de données ;

  2. l’évaluation par approches semi-quantitatives ;

  3. l’application de modèles mathématiques plus ou moins complexes.

Les approches 1) et 2) sont présentées dans l’article [SE 4 020]. Cet article propose de faire un état des lieux sur les modèles mathématiques disponibles pour évaluer la probabilité d’inflammation retardée. Un focus est fait sur les modèles mathématiques dits temporels qui sont aujourd’hui reconnus comme l’approche la plus aboutie pour estimer les probabilités d’inflammation.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

explosion   |   Ignition probability   |   immediate ignition   |   mathematical model   |   delayed ignition

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-se4021


Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Quelques modèles mathématiques simplifiés

3.1 Modèle de Cox et al.

Cox et al. (1990)  ont proposé une corrélation qui relie la probabilité d’inflammation « totale » (immédiate et retardée) au débit massique de fuite noté (kg/s).

Cette corrélation est la suivante :

Les coefficients a et b ont été proposés pour les différentes configurations décrites dans le tableau 1. Les coefficients relatifs à la configuration « cas observé » ont été calibrés en considérant :

  • une probabilité d’inflammation égale à 0,3 pour un débit de fuite de 50 kg/s. Cette valeur est issue des données relatives aux mises à l’atmosphère (blowout) rapportées par Dalh et al. (1983)  ;

  • une probabilité d’inflammation égale à 0,01 pour un débit de fuite de 0,5 kg/s. Cette valeur est issue des données de Kletz (1977) .

Pour les autres configurations, les coefficients...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(476 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Quelques modèles mathématiques simplifiés
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LUND (J.K.), CHRISTENSEN (J.A.), WIKLAND (J.) -   Ignition modeling in risk analysis, scandpower for OLF,  -  Report 8 390 008/R1, section 8, 2007.

  • (2) -   IP research report – Ignition probability review, model development and look up correlations,  -  UKOOA, janvier 2006.

  • (3) -   Modelling of ignition sources on offshore oil and gas facilities,  -  MISOF Report n° 106364/R1 Rev, novembre 2016.

  • (4) -   JIP ignition modelling time dependent ignition probability model,  -  Report n° 96-3629 Rev 04.

  • (5) - COX (A.W.), LEES (F.P.), ANG (M.L.) -   Classification of hazardous locations,  -  Institution of Chemical Engineers, 1990.

  • (6) -   Purple book.  -  Committee for the Prevention of Disasters, Guidelines for quantitative risk assessment, CPR18 E, 1999.

  • ...

NORMES

  • Atmosphères explosives – Prévention de l’explosion et protection contre l’explosion – Partie 1 : notions fondamentales et méthodologie - NF EN 1127 – 1 -

  • Produits chimiques à usage industriel. Détermination de la température d’auto-inflammation des liquides volatils et des gaz - AFNOR NF T 20-037 -

ANNEXES

  1. 1 Organismes

    1 Organismes

    Accidental Risk Assessment Methodology for Industries in the framework of SEVESO II directive https://www.researchgate.net/publication/237251847_ARAMIS_Accidental_Risk_Assessment_Methodology_for_IndustrieS_in_the_context_of_SEVESO_II

    Center for Chemical Process Safety (CCPS) http://www.aiche.org/ccps

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 95% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Sécurité et gestion des risques

    (476 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS