La détection rapide et précise d'analytes (protéines, brins d'ADN, marqueurs tumoreux…) en faibles concentrations est cruciale dans de nombreux domaines comme le diagnostic médical, le monitoring environnemental ou encore le contrôle de qualité dans la chaîne alimentaire.
Les capteurs à fibres optiques répondent élégamment à cette problématique étant donné qu'ils fournissent une plate-forme sensible, compacte à l'échelle de la centaine de micromètres et qu'ils offrent la possibilité de réaliser des mesures in situ avec une instrumentation déportée qui peut se situer à plusieurs mètres voire plusieurs centaines de mètres de l'endroit de mesure.
En sus de ces atouts très prisés, ce type de capteurs possède l'ensemble des avantages inhérents à l'emploi des fibres optiques. Ils sont donc, entre autres, insensibles aux interférences électromagnétiques, résistants aux hautes températures et à la corrosion chimique et offrent la possibilité d'adresser simultanément plusieurs points de mesure.
Cependant, une fibre optique n'est pas intrinsèquement sensible et sélective à des composés biochimiques ou biologiques. Dans la pratique, il convient tout d'abord de la rendre localement sensible à un changement d'indice de réfraction du milieu extérieur. Cette aptitude peut résulter de différentes configurations, comme la diminution de l'épaisseur de la gaine optique ou encore la photo-inscription dans le cœur de la fibre d'une structure périodique radiative. Cette partie sensible est alors traitée en surface afin qu'elle présente à la fois une affinité et une sélectivité avec les espèces biochimiques à détecter. Dans le cas des capteurs de type plasmonique, la surface de la fibre optique est d'abord recouverte d'une couche nanométrique d'or, dans le but de générer une résonance de plasmon de surface. Des biorécepteurs sont ensuite greffés sur l'or, lesquels présentent une affinité avec les espèces chimiques à détecter également appelées « ligands », selon un modèle anticorps-antigènes. Ainsi, par adsorption des ligands, la couche bioréceptrice subit une modification de son indice de réfraction, ce qui impacte la résonance de plasmon de surface et affecte en retour l'onde lumineuse propagée au sein de la fibre optique.
Ce dossier a pour objectif de présenter le principe physique sous-jacent à la génération de résonances de plasmon de surface dans les fibres optiques. Il s'attarde ensuite sur les principales configurations de biocapteurs plasmoniques à fibres optiques. Des exemples concrets de réalisation sont finalement discutés.