Pour les exploitants de procédés industriels, la surveillance de l’état de santé de leurs équipements est l’une des préoccupations majeures pour éviter l’indisponibilité de leurs installations. Dans cet objectif, de nombreuses méthodes et outils ont été développés ces dernières décennies pour détecter l’apparition des dégradations, réaliser le diagnostic et estimer la durée de vie restante avant l’apparition de la défaillance (DEFAD, RUL en anglais). La grande majorité d’entre eux reposent exclusivement et uniquement sur l’exploitation de l’expérience et de la connaissance, des données ou des modèles physiques. Cet article présente un état de l’art des méthodes hybrides combinant les avantages des méthodes précédentes pour réaliser le diagnostic et le pronostic de défaillance. Pour éviter toute ambiguïté dans les termes utilisés dans cet article, la première section présente les principales définitions et terminologies proposées par les normes internationales ISO et NF-EN (ISO 13372:2012, ISO 13379-1 ISO 13381-1, ISO 16079-1 et NF EN 13306). La seconde section, après un rappel succinct des enjeux et des étapes principales, présente les principes généraux des méthodes hybrides. Ensuite, un inventaire bref rappelle les caractéristiques principales des méthodes élémentaires fondées sur l’expérience et la connaissance, des méthodes fondées sur les données et des méthodes fondées sur les modèles physiques indispensables à la mise au point des méthodes hybrides. Les différentes méthodes hybrides décrites dans la littérature reposant sur la mise en série ou en parallèle des méthodes élémentaires précédentes, la troisième section présente leur classification en cinq catégories proposées par Linxia Liao. Cette typologie prend en compte : 1) les méthodes fondées sur l’expérience, la connaissance et sur les données, 2) les méthodes fondées sur l’expérience et la connaissance et les modèles fondés sur la physique, 3) les méthodes fondées sur plusieurs traitements de données, 4) les méthodes fondées sur les données et sur les modèles physiques, 5) les méthodes fondées sur l’expérience, la connaissance, les données et sur les modèles physiques.
Pour illustrer la diversité des approches hybrides et leur efficacité, la quatrième section présente quatre études de cas. Le premier cas concerne une méthode hybride utilisant des données et des modèles physiques pour prédire l’érosion d’une vanne à étranglement d’une installation pétrolière sous-marine. Elle met en œuvre une procédure qui utilise un lissage des données par modèles autorégressifs, un réseau de neurones standard et un modèle de fiabilité fondé sur la loi Gamma. Le second cas propose une méthode de prédiction de la fiabilité d’un roulement à billes avec une approche utilisant plusieurs méthodes de traitement de données (analyse en composantes principales, ACP et régression logistique). La fiabilité des batteries lithium-ion jouant un rôle important dans le stockage et la fourniture d’énergie électrique, le troisième cas propose une méthode de prédiction de la capacité de charge d’une batterie au lithium reposant sur des modèles autorégressifs ARMA et des réseaux de neurones. Le dernier cas propose une méthode destinée à modéliser la vitesse de propagation de la fissure sans connaissance des lois de propagation en vue de la prédiction du RUL. Elle utilise une méthode hybride à base d’un modèle de représentation et d’un réseau de neurones. Les performances obtenues avec ces quatre méthodes hybrides illustrent de façon très explicite les difficultés liées à la résolution des problèmes de diagnostic et de pronostic et démontrent que chaque application nécessite la mise en œuvre d’une méthode hybride adaptée. En conclusion, compte tenu du fait qu’il n’existe pas de méthode hybride « miracle », les trois défis majeurs que l’on doit relever pour sélectionner la meilleure approche sont énumérés : recherche de la meilleure méthode hybride en fonction des données et des informations disponibles, conception des mécanismes de fusion entre les sources d’information hétérogènes et les modèles mis en concurrence, et gestion des incertitudes dans la prédiction du RUL.