Les structures aéronautiques sont soumises, lorsqu’elles sont en service, à des sollicitations fluctuant au cours du temps. Citons pour exemples la pressurisation du fuselage, les manœuvres du pilote, les turbulences atmosphériques... L’expérience montre que la répétition de cycles d’effort modifie et dégrade les propriétés des matériaux et peut conduire, à terme, à la rupture de pièces. Ce phénomène est couramment appelé « fatigue » ou « endommagement par fatigue ». Il peut se manifester pour des niveaux de contraintes relativement faibles et inférieurs à la limite d’élasticité du matériau. Dans le domaine aéronautique, la fatigue se produit en général sans déformation plastique d’ensemble mais avec une déformation plastique très localisée autour des accidents de forme (entaille, alésage, congés de raccordement...).
La prise en compte du phénomène de fatigue doit se faire dès la conception des structures.
La question ardue à laquelle le constructeur d’aéronefs doit répondre est celle du compromis nécessaire entre les exigences économiques (durée de vie la plus élevée possible, masse structurale la plus basse possible), les exigences techniques (disponibilité et performances intrinsèques des matériaux, technologie, mise en œuvre, dessin, etc.) et les exigences réglementaires (tenue d’une structure aux charges extrêmes, maintien de la navigabilité...).
Le choix de bons matériaux revêt une importance toute particulière. On a cru pendant longtemps qu’il fallait, avant tout, rechercher des matériaux possédant une résistance à la déformation la plus élevée possible. Puis, progressivement, dans de nombreux cas, on a dû s’employer à rechercher des matériaux présentant un meilleur compromis entre leur résistance et leur ténacité ou, de façon plus générale, leur ductilité. Par ailleurs, surdimensionner n’est pas non plus une bonne solution.
Ainsi, les alliages légers sont très utilisés pour la structure des aéronefs.
La première partie de ce texte présente succinctement les caractéristiques générales des alliages d’aluminium et de titane.
Les méthodes de calcul en fatigue et mécanique de la rupture adaptés à ces alliages sont détaillés dans une seconde partie.
Se reporter également aux articles :
Fatigue des alliages ferreux. Approche classique [B 5 050] ; Mécanique de la rupture Mécanique de la rupture ; Concentration de contraintes [BM 5 040] ; de ce traité.