Résumé
Les MEMS (microsystèmes électromécaniques) sont présents dans de nombreux domaines tels que le transport, la défense ou les télécommunications... et permettent, sur de petites surfaces, de réaliser des fonctions de capteurs et d'actionneurs. Pour ce faire, le MEMS a besoin d'une source d'énergie. Jusqu'à présent, cette fonction est assurée par des batteries dont le principal défaut est la durée de vie limitée. Une solution consiste donc à récupérer l'énergie dans l'environnement immédiat du microsystème. Nous nous intéressons ici à la récupération de l'énergie vibratoire par des systèmes électrostatiques, et en présentons les principes de conversion, ainsi qu'un état de l'art.
Abstract
MEMS (Micro-Electro-Mechanical Systems) are present in many fields such as transportation, defense and telecommunications... and can, with small dimensions, perform functions of sensors and actuators. To do so, MEMS require a source of energy. So far, this function is provided by batteries whose main fault is the limited lifetime. One solution is to harvest energy in the immediate vicinity of the microsystem. Here we focus on the harvesting of vibrational energy by electrostatic systems, and present the principles of conversion and a state of the art.
Mots-clés
MEMS, récupération d'énergie, systèmes autonomes, électrets, systèmes capacitifs, systèmes électrostatiques, vibrations, conversion d'énergie, smart dusts, décharge Corona
Keywords
energy harvesting, autonomous systems, electrets, capacitive systems, MEMS, electrostatic systems, vibrations, converters, smart dusts, Corona discharge
Points clés
Domaine : énergie
Degré de diffusion de la technologie : Émergence
Technologies impliquées : électrets, fabrication microsystèmes, électronique
Domaines d'application : systèmes autonomes, capteurs sans fils, récupération d'énergie
Principaux acteurs français :
Centres de compétence : CEA Grenoble, ESIEE
Autres acteurs dans le monde : IMEC, Université de Tokyo, Caltech, Imperial College London, Omron, Sanyo