Depuis la découverte des cristaux photoniques en 1987, les physiciens des ondes élaborent des modèles théoriques et numériques pour un contrôle accru de la lumière dans des matériaux structurés à l’échelle nanométrique, du son à l’échelle micrométrique, et s’en inspirent pour aller jusqu’à rechercher le contrôle des ondes élastiques de Rayleigh dans des sols structurés à l’échelle métrique. C’est ainsi qu’un « minéral » d’un nouveau genre, la yablonovite, constituée artificiellement d’un réseau de cylindres creux de quelques dizaines de nanomètres de diamètre dans un bloc de verre, a inspiré la structuration de la matière à différentes échelles. Le transfert de paradigme continue à s’opérer vers les métamatériaux électromagnétiques pour la photonique, et les métamatériaux sismiques pour le génie civil, avec des sols structurés et des métasurfaces avec des résonateurs à la surface terrestre. L’interaction entre les disciplines s’accélère avec des développements à bénéfices réciproques. Ainsi, l’émergence des métamatériaux élastiques à résonance locale montre un potentiel prometteur en vibro-acoustique. La transition vers des solutions d’ingénierie nécessite toutefois encore des prévisions de performances robustes. La prise en compte de l’amortissement dans les systèmes mécaniques étudiés conduit à de l’atténuation de crête mais apporte aussi des performances vibro-acoustiques souhaitées, à plus large bande. Cet article fait le point sur la révolution en marche de l’extension des principes de l’interaction des ondes avec la matière sur les technologies du quotidien.