Les procédés de dépôt physique en phase vapeur (PVD Physical Vapour Deposition) constituent un ensemble de techniques de synthèse de revêtements métallurgiques ou de films céramiques trouvant leurs applications dans des domaines aussi divers que la mécanique, l’optique, l’électronique, les industries chimique et aéronautique, etc. D’un point de vue général, les revêtements sont réalisés sous atmosphère raréfiée (< 10 Pa) suivant trois étapes : la création d’une vapeur métallique à partir d’une source (ou cible), son transport au sein d’un réacteur et sa condensation à la surface d’un substrat à revêtir. Si l’appellation PVD regroupe une quantité importante de procédés, on peut avantageusement les classer en trois grandes catégories selon le mode d’obtention de la vapeur métallique : par effet thermique, on parle d’évaporation, tandis que par effet mécanique, c’est de pulvérisation qu’il s’agit. Le cas de l’arc cathodique sous basse pression allie les deux effets pour la génération de la vapeur métallique.
Un réacteur de dépôt physique assisté-plasma est constitué au minimum d’une chambre à vide secondaire, d’une source de vapeur métallique, d’un porte-substrat isolé du reste de l’installation, d’une centrale de débitmétrie et des générateurs nécessaires à la création de la décharge électrique et à la polarisation des substrats. Nous nous intéresserons ici spécifiquement à une technique qui connaît un essor industriel important, fruit des progrès considérables réalisés au cours de ces vingt à trente dernières années dans la compréhension des mécanismes qui la gouvernent : la pulvérisation cathodique magnétron.
La première partie sera consacrée à l’étude détaillée du procédé de pulvérisation cathodique magnétron. Après un rappel de ses mécanismes physiques, nous nous attacherons à décrire les différents moyens d’obtention des revêtements de métaux ou d’alliages métalliques en soulignant les relations entre les conditions d’élaboration et les caractéristiques métallurgiques des couches, ces dernières conditionnant leurs propriétés d’emploi.
Nous décrirons dans une seconde partie les phénomènes autorisant la synthèse de revêtements céramiques en présence d’une atmosphère réactive. Les principales difficultés inhérentes au procédé de pulvérisation cathodique magnétron en condition réactive et les méthodes développées pour les contourner seront également présentées. C’est dans ce contexte que nous proposerons finalement deux méthodes spectroscopiques de diagnostic plasma et d’interférométrie optique autorisant le contrôle in situ du procédé.