Présentation

Article interactif

1 - PLACE DES OUTILS MICROFLUIDIQUES EN CRISTALLISATION

2 - CONTRÔLE DE LA SURSATURATION

3 - CONCEPTION ET FABRICATION DES PUCES MICROFLUIDIQUES POUR LA CRISTALLISATION

4 - COUPLAGE MICROFLUIDIQUE/TECHNIQUES D’ANALYSE IN SITU

5 - EXEMPLES D’APPLICATIONS

6 - CONCLUSION

7 - GLOSSAIRE

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : J8065 v1

Exemples d’applications
Microfluidique de gouttes et cristallisation - Génération de cristaux en milieu confiné

Auteur(s) : Béatrice BISCANS, Isaac RODRIGUEZ-RUIZ, Sébastien TEYCHENE

Relu et validé le 05 janv. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Depuis les années 2000, les systèmes de microfluidique de gouttes sont développés pour étudier des processus de cristallisation et générer des milliers de gouttes de volume variant entre le nano et le femtolitre de façon répétable. Ces gouttes sont des microcristallisoirs. Cet article pose les bases de la fabrication et de l’utilisation de ces outils microfluidiques pour acquérir des connaissances sur la nucléation et la croissance de cristaux dans des conditions qui permettent un contrôle local des paramètres de cristallisation. En effet, ce sont les interactions locales qui conditionnent les futures propriétés des cristaux et ces données ne sont pas aisément atteignables dans un réacteur.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Droplet microfluidics for crystallization Crystals generation in confined systems

Since 2000, droplet microfluidics have been developed to study crystallization processes and generate thousands of droplets of volume varying between the nano and the femtoliter in a repeatable manner; these droplets can be considered as micro-crystallizers. This article lays the fundamentals of the manufacture and use of droplet microfluidic tools to acquire knowledge on crystal nucleation and growth stages, under conditions permitting a local control of crystallization parameters. Indeed, the properties of the future crystals are conditioned by the interactions occurring at local scale, and these phenomena are not addressable in a large volume reactor.

Auteur(s)

  • Béatrice BISCANS : Docteur de l’Université de Toulouse. Ingénieur de Génie Chimique ENSIGC, Toulouse - Directeur de Recherche CNRS au Laboratoire de Génie Chimique UMR 5503 de Toulouse

  • Isaac RODRIGUEZ-RUIZ : Docteur de l’Université de Grenade, Espagne - Chargé de Recherche CNRS au Laboratoire de Génie Chimique UMR 5503 de Toulouse

  • Sébastien TEYCHENE : Docteur de l’Université de Toulouse. Ingénieur INSA, Toulouse - Maître De Conférences INP, au Laboratoire de Génie Chimique UMR 5503 de Toulouse

INTRODUCTION

Les procédés de cristallisation et de précipitation ont pour objectif de produire à l’échelle industrielle, une population de cristaux dont, par exemple, la structure cristalline, la taille, la distribution de taille, le faciès, la qualité physique et chimique (pureté, composition des co-cristaux), la porosité (et donc la surface spécifique) doivent être contrôlés. À ce large éventail de propriétés (parfois antinomiques), vient s’ajouter le couplage entre l’hydrodynamique du réacteur de cristallisation et les processus physicochimiques, souvent complexes, responsables de la formation des cristaux. La connaissance des processus fondamentaux de cristallisation reste donc un enjeu crucial compte tenu de la grande diversité des interactions moléculaires en solution et de l’influence croisée des paramètres du procédé (température, concentration impuretés, agitation du milieu).

De nombreux domaines sont concernés : chimie de base, chimie fine, pharmacie, alimentaire, matériaux, pigments, catalyseurs...Les besoins actuels sont surtout d’améliorer la fabrication des cristaux sur le plan de la répétabilité des propriétés, et de développer de nouvelles fabrications à l’échelle commerciale.

Les systèmes microfluidiques de goutte permettent de miniaturiser le réacteur de cristallisation et de générer une multitude de gouttes « microcristallisoirs » circulant dans des canaux dans un liquide porteur et permettant d’atteindre de nombreuses conditions de cristallisation contrôlées au sein de chacune de ces gouttes. Ces dispositifs permettent de générer un grand nombre d’évènements de cristallisation et de suivre séparément les cinétiques de nucléation et de croissance des cristaux. Par exemple, il est possible avec ces outils microfluidiques de mesurer plusieurs points de la courbe de solubilité d’un soluté, en peu de temps, et avec une faible quantité de produit. Ces systèmes permettent aussi de révéler diverses formes polymorphiques, et de quantifier la cinétique de nucléation. Ces expériences apportent de nouvelles données par rapport aux mesures classiques effectuées dans de grands réacteurs.

Il est donc important de choisir sa puce microfluidique en fonction du produit ciblé et des données que l’on souhaite acquérir. Aujourd’hui, plusieurs technologies permettent de dessiner et fabriquer la géométrie des canaux ou les puits de stockage des gouttes. Ces puces microfluidiques sont couplées à différentes méthodes d’analyse locale de la goutte par imagerie ou spectroscopie, et conduisent à faire progresser la science et la technologie liées à la cristallisation industrielle.

L’objectif de cet article est de fournir les éléments de connaissance permettant de choisir son dispositif de microfluidique de gouttes, à la fois sur le plan des matériaux qui le constituent, de la conception des écoulements et des mélangeurs de solutions et des capteurs qui permettront d’enregistrer les évolutions des produits qui cristallisent.

Dans un premier temps, cet article présente, trois méthodes de création de la sursaturation de la solution au sein des gouttes, couramment utilisées : la cristallisation par réaction chimique, l’ajout d’un antisolvant et la voie thermique par changement de température de la goutte ou évaporation de la solution. Puis, dans une deuxième partie, les technologies de fabrication des dispositifs microfluidiques et les matériaux qui les constituent sont présentés, ainsi que les critères de choix. Le choix du matériau ainsi que la géométrie du système microfluidique dépend de l’application visée (types de solvants et de soluté) et du phénomène à étudier (nucléation, croissance, polymorphisme). Enfin, la dernière partie présente le couplage entre les méthodes de caractérisation in situ et les systèmes microfluidiques de gouttes. Les techniques de microscopie et analyse d’images, de spectroscopie Raman, de spectroscopie et imagerie IR et de spectroscopie UV sont décrites.

Un tableau de notations est placé en fin d’article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

crystallizers   |   spectroscopy   |   nucleation   |   crytals

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j8065


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(359 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Exemples d’applications

5.1 Mesures des cinétiques de nucléation

La plupart des solutions de cristallisation étudiées, et portées à sursaturation pour déclencher la nucléation, contiennent une quantité d’impuretés, qui peuvent potentiellement agir comme des sites actifs favorisant la nucléation hétérogène. Néanmoins, la nucléation peut également se produire de manière homogène au sein de la solution. En utilisant les systèmes microfluidiques mettant en œuvre la division de la solution initiale en plus petits volumes (gouttes), ces impuretés sont compartimentées et par conséquent, le taux de nucléation est plus bas et peut être mesuré expérimentalement. La figure 8 amontre un dispositif de microfluidique de gouttes permettant d’arrêter la progression des gouttes dans les canaux en les bloquant dans des pièges. Ainsi, on peut enregistrer sous microscope les événements de nucléation et compter automatiquement le nombre de cristaux dans chaque goutte.

L’exploitation des mesures peut être réalisée en utilisant le modèle probabiliste de Pound et La Mer . Une distribution de Poisson est considérée pour calculer les taux de nucléation à la fois homogènes et hétérogènes, en déterminant expérimentalement la fraction de gouttelettes contenant un nombre donné de cristaux en fonction du temps. Ce modèle, présenté implicitement dans l’équation ((11)), a été récemment étendu par Bourgeois et coll. ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(359 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Exemples d’applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GANÁN-CALVO (A.M.), GORDILLO (J.M.) -   Perfectly monodisperse microbubbling by capillary flow focusing.  -  Physical review letters. 87:274501 (2001).

  • (2) - GARSTECKI (P.), GITLIN (I.), DILUZIO (W.), WHITESIDES (G.M.), KUMACHEVA (E.), STONE (H.A.) -   Formation of monodisperse bubbles in a microfluidic flow-focusing device.  -  Applied Physics Letters. 85:2649-51 (2004).

  • (3) - LINK (D.), ANNA (S.L.), WEITZ (D.), STONE (H.) -   Geometrically mediated breakup of drops in microfluidic devices. Physical review letters.  -  92:054503 (2004).

  • (4) - TAN (Y.-C.), FISHER (J.S.), LEE (A.I.), CRISTINI (V.), LEE (A.P.) -   Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.  -  Lab on a Chip. 4:292-8 (2004).

  • (5) - PIT (A.M.), DUITS (M.H.), MUGELE (F.) -   Droplet manipulations in two phase flow microfluidics.  -  Micromachines. 6:1768-93 (2015).

  • ...

ANNEXES

  1. 1 Annuaire

    1 Annuaire

    Fournisseurs de dispositifs microfluidiques (liste non exhaustive)

    Micronit

    https://www.micronit.com

    Dolomite

    https://www.dolomite-microfluidics.com

    Microfluidic chip shop

    https://www.microfluidic-chipshop.com

    Fluigent

    https://www.fluigent.com/microfluidics

    Laboratoires travaillant sur le sujet (liste non-exhaustive)

    LGC-Laboratoire de Génie Chimique UMR 5503 - Toulouse

    https:// www.lgc.cnrs.fr

    CINAM-Centre de Recherche en Matière Condensée et Nanosciences, UMR 7325-CNRS, Marseille.

    http://www.cinam.univ-mrs.fr/cinam/

    ICMCB -Institut de Chimie de la Matière Condensée -Bordeaux

    https://www.icmcb-bordeaux.cnrs.fr

    LOF Laboratoire du futur UMR5258 -Pessac

    https://www.lof.cnrs.fr

    IPGG Institut Pierre Gilles de Gennes pour la Microfluidique- Paris

    https://www.institut-pgg.fr

    Laboratoire SMS

    https://www.labsms.univ-rouen.fr/

    GdR MNF

    https://www.gdrmicrofluidique.com/le-gdr/

    GdR Synth_Flux

    https://wwwgdrsynth-flux.cnrs.fr/le-gdr/

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 94% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Opérations unitaires. Génie de la réaction chimique

    (359 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS

    Sommaire

    QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

    1/ Quiz d'entraînement

    Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

    2/ Test de validation

    Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

    Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Opérations unitaires. Génie de la réaction chimique

    (359 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS