Présentation

Article

1 - CONTEXTE

  • 1.1 - Qu’est-ce qu’un plan d’expériences ?
  • 1.2 - Avantages de faire un plan d’expériences sur un exemple agroalimentaire

2 - PLAN FACTORIEL À DEUX NIVEAUX

3 - MODÉLISATION

  • 3.1 - Calcul des coefficients
  • 3.2 - Modèle pour un plan de trois facteurs

4 - PLAN FRACTIONNAIRE À DEUX NIVEAUX

5 - PLAN SELON LES RÉSEAUX SIMPLEXE DE SCHEFFÉ

Article de référence | Réf : F1005 v1

Plan factoriel à deux niveaux
Planification expérimentale en agroalimentaire

Auteur(s) : Rachid SABRE

Date de publication : 10 mars 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Depuis quelques années, l’industrie agroalimentaire consacre davantage de ressources à la conduite de ses essais expérimentaux. Laissant de côté la démarche traditionnelle basée sur le savoir-faire de l’expérimentateur, et souvent peu satisfaisante, elle s’offre maintenant une approche maîtrisée et rigoureuse, une vraie stratégie d’expériences. Après une présentation détaillée de quelques exemples (plan factoriel, plan fractionnaire, modèle de Scheffé), cet article s’attarde à démontrer l’intérêt scientifique et économique de ces plans d’expériences.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Rachid SABRE : Enseignant-chercheur - Responsable du laboratoire de Mathématiques Appliquées à l’Informatique et aux Statistiques MAIS à l’ENESAD - Membre de l’Institut de Mathématiques de Bourgogne CNRS

INTRODUCTION

L’industrie agroalimentaire, devant l’amélioration ou la création d’un nouveau produit, accorde ces dernières années une place importante à l’organisation des essais expérimentaux. La démarche traditionnelle pas à pas était basée sur le savoir-faire et le bon sens de l’expérimentateur. Cela engendrait de nombreux essais et un temps considérable pour atteindre parfois des résultats difficilement interprétables.

Cependant, les exigences du client sur le plan qualité et goût d’une part et la course des entreprises vers des réductions des coûts de développement d’autre part, nécessitent l’utilisation d’une approche scientifiquement rigoureuse : un « plan d’expériences » appelé aussi une « stratégie d’expériences ».

Ainsi, une industrie de chocolat, par exemple, doit réaliser plusieurs mélanges en variant les composants ou en variant tout simplement leur dosage pour obtenir un produit qui répond à certaines caractéristiques organoleptiques exigées comme : fondant, gras, saveur sucré, caramélisé, lactée, persistance du goût, couleurs, etc. Les interrogations que se pose le responsable d’un projet peuvent être résumées en trois questions pertinentes :

  • quels sont les composants à étudier soupçonnés de pouvoir changer le résultat pour atteindre le mélange répondant aux caractéristiques attendues du produit ?

  • quelles sont les proportions de ces composants à mettre dans ce mélange ?

  • combien d’essais doivent être réalisés pour avoir la réponse attendue ?

L’objectif du plan d’expériences est de répondre à ces questions en proposant des méthodes mathématiques permettant d’organiser un nombre réduit d’essais expérimentaux dont les résultats sont exploitables.

Dans ce travail, nous commençons par définir un plan d’expériences puis montrons l’avantage scientifique et économique de son utilisation. Dans les paragraphes qui suivent, nous exposons le plan factoriel complet, le plan factoriel fractionnaire et les modèles de Scheffé. Afin de conserver la confidentialité de certaines études, les données concernant quelques exemples sont modifiées ou exposées d’une manière partielle.

Ce document présentant quelques plans d’expériences ne prétend pas exposer tous les plans existants. D’autres plans complémentaires comme par exemple, celui de Taguchi, seront présentés dans un numéro ultérieur.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-f1005


Cet article fait partie de l’offre

Agroalimentaire

(257 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Plan factoriel à deux niveaux

2.1 Dans quel cas peut-on utiliser ce plan ?

Ce plan peut être utilisé quand l’expérimentateur a déjà déterminé les k facteurs soupçonnés influents sur le phénomène étudié ainsi que leurs limites de variation appelées : niveau bas et niveau haut.

Ce plan n’est possible que lorsque l’on peut réaliser les essais en combinant tous les facteurs à leurs deux niveaux.

Le plan factoriel a été largement étudié dans la littérature. Nous citons ici quelques références non exhaustives : Afnor [1] ; Box et Hunter [2] [4] ; Daudin et Duby [5] ; Droesbeke, Fine et Saporta [6] ; Goupy [7]...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Agroalimentaire

(257 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Plan factoriel à deux niveaux
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AFNOR -   Méthodes statistiques.  -  5 tomes, 8e édition, Paris (1999).

  • (2) - BOX (G.E.P.), HUNTER (J.S.) -   Multi-Factor Experimental Designs for Exploring Response Surfaces.  -  Annals of Mathematical Statistics, 28, pp. 195-241 (1995).

  • (3) - BOX (G.E.P.), HUNTER (J.S.) -   The 2 k–p fractional factorial designs.  -  Technometrics, 3 pp. 311-351 et pp. 449-458 (1961).

  • (4) - BOX (G.E.P.), HUNTER (W.G.) -   Sequential Design of experiments for nonlinear models.  -  Proceedings of the IBM Scientific Computing symposium on Statistics, October, pp. 21-33 et pp. 113-137 (1963).

  • (5) - DAUDIN (J.J.), DUBY (C.) -   Techniques mathématiques pour l’industrie agroalimentaire.  -  Collection Sciences et Techniques agroalimentaires, Édition Tec & Doc, Paris (2002).

  • (6) - DROESBEKE (J.), FINE (J.), SAPORTA (G.) -   Plans...

ANNEXES

  1. 1 Logiciels

    1 Logiciels

    (Liste non exhaustive)

    Nemrod, logiciel construit à LPRAI, Université d’Aix-Marseille http://www.nemrodw.com

    Sas, Editor Institute

    Spad, DECISIA/SPAD https://www.test-and-go.com/fr/ct

    Splus, distribué par SIGMA PLUS http://statwww.epfl.ch/splus/

    Statgraphics plus, distribué par SIGMA PLUS http://www.sigmaplus.fr

    Statistica, Statsoft http://www.statsoft.com/french

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Agroalimentaire

    (257 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS