Présentation
En anglaisRÉSUMÉ
Depuis quelques années, l’industrie agroalimentaire consacre davantage de ressources à la conduite de ses essais expérimentaux. Laissant de côté la démarche traditionnelle basée sur le savoir-faire de l’expérimentateur, et souvent peu satisfaisante, elle s’offre maintenant une approche maîtrisée et rigoureuse, une vraie stratégie d’expériences. Après une présentation détaillée de quelques exemples (plan factoriel, plan fractionnaire, modèle de Scheffé), cet article s’attarde à démontrer l’intérêt scientifique et économique de ces plans d’expériences.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Rachid SABRE : Enseignant-chercheur - Responsable du laboratoire de Mathématiques Appliquées à l’Informatique et aux Statistiques MAIS à l’ENESAD - Membre de l’Institut de Mathématiques de Bourgogne CNRS
INTRODUCTION
L’industrie agroalimentaire, devant l’amélioration ou la création d’un nouveau produit, accorde ces dernières années une place importante à l’organisation des essais expérimentaux. La démarche traditionnelle pas à pas était basée sur le savoir-faire et le bon sens de l’expérimentateur. Cela engendrait de nombreux essais et un temps considérable pour atteindre parfois des résultats difficilement interprétables.
Cependant, les exigences du client sur le plan qualité et goût d’une part et la course des entreprises vers des réductions des coûts de développement d’autre part, nécessitent l’utilisation d’une approche scientifiquement rigoureuse : un « plan d’expériences » appelé aussi une « stratégie d’expériences ».
Ainsi, une industrie de chocolat, par exemple, doit réaliser plusieurs mélanges en variant les composants ou en variant tout simplement leur dosage pour obtenir un produit qui répond à certaines caractéristiques organoleptiques exigées comme : fondant, gras, saveur sucré, caramélisé, lactée, persistance du goût, couleurs, etc. Les interrogations que se pose le responsable d’un projet peuvent être résumées en trois questions pertinentes :
-
quels sont les composants à étudier soupçonnés de pouvoir changer le résultat pour atteindre le mélange répondant aux caractéristiques attendues du produit ?
-
quelles sont les proportions de ces composants à mettre dans ce mélange ?
-
combien d’essais doivent être réalisés pour avoir la réponse attendue ?
L’objectif du plan d’expériences est de répondre à ces questions en proposant des méthodes mathématiques permettant d’organiser un nombre réduit d’essais expérimentaux dont les résultats sont exploitables.
Dans ce travail, nous commençons par définir un plan d’expériences puis montrons l’avantage scientifique et économique de son utilisation. Dans les paragraphes qui suivent, nous exposons le plan factoriel complet, le plan factoriel fractionnaire et les modèles de Scheffé. Afin de conserver la confidentialité de certaines études, les données concernant quelques exemples sont modifiées ou exposées d’une manière partielle.
Ce document présentant quelques plans d’expériences ne prétend pas exposer tous les plans existants. D’autres plans complémentaires comme par exemple, celui de Taguchi, seront présentés dans un numéro ultérieur.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Agroalimentaire
(257 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Contexte
1.1 Qu’est-ce qu’un plan d’expériences ?
C’est le plan d’organisation des essais expérimentaux dans le but de connaître le comportement du résultat (réponse) à partir de la variation des facteurs choisis. Un bon plan permet une diminution notable du nombre d’essais tout en donnant une bonne précision dans la détermination des résultats. Pour réaliser un bon plan d’expériences, on doit respecter les étapes suivantes.
• Formalisation du problème. Pour cela, il est nécessaire de recueillir un maximum d’informations sur le phénomène étudié permettant ainsi de définir les facteurs à faire varier ainsi que leur niveau de variation. En effet, le succès du plan d’expériences dépend d’une bonne connaissance des limites acceptables de variation des facteurs. Pour cela, une série d’essais préliminaires peut être programmée.
• Choix et construction du plan retenu.
• Réalisation des essais. Elle doit se faire en respectant les conditions expérimentales. Les facteurs doivent être bien aux niveaux préconisés. La réponse (le résultat) doit être donnée avec la plus grande précision. En cas de répétitions, les mesures doivent être réalisées de préférence par le même expérimentateur.
• Traitements statistiques : calcul des effets de facteurs étudiés et de leurs interactions, modélisation,... Le choix du logiciel ainsi que sa maîtrise est très déterminant pour la précision et l’interprétation des résultats statistiques. Le conseil d’un statisticien semble nécessaire.
• Interprétation des résultats. L’effet propre de chaque facteur est relativement simple à interpréter mais l’effet interaction est parfois délicat à expliquer car les causes ne sont pas toujours explicites.
HAUT DE PAGE1.2 Avantages de faire un plan d’expériences sur un exemple agroalimentaire
Prenons comme exemple un mélange pour la fabrication d’un produit chocolatier. Pour simplifier, ne faisons varier que deux facteurs : F 1 = masse de cacao et F 2 = beurre concentré. La réponse mesurée étant...
Cet article fait partie de l’offre
Agroalimentaire
(257 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contexte
BIBLIOGRAPHIE
-
(1) - AFNOR - Méthodes statistiques. - 5 tomes, 8e édition, Paris (1999).
-
(2) - BOX (G.E.P.), HUNTER (J.S.) - Multi-Factor Experimental Designs for Exploring Response Surfaces. - Annals of Mathematical Statistics, 28, pp. 195-241 (1995).
-
(3) - BOX (G.E.P.), HUNTER (J.S.) - The 2 k–p fractional factorial designs. - Technometrics, 3 pp. 311-351 et pp. 449-458 (1961).
-
(4) - BOX (G.E.P.), HUNTER (W.G.) - Sequential Design of experiments for nonlinear models. - Proceedings of the IBM Scientific Computing symposium on Statistics, October, pp. 21-33 et pp. 113-137 (1963).
-
(5) - DAUDIN (J.J.), DUBY (C.) - Techniques mathématiques pour l’industrie agroalimentaire. - Collection Sciences et Techniques agroalimentaires, Édition Tec & Doc, Paris (2002).
-
(6) - DROESBEKE (J.), FINE (J.), SAPORTA (G.) - Plans...
ANNEXES
(Liste non exhaustive)
Nemrod, logiciel construit à LPRAI, Université d’Aix-Marseille http://www.nemrodw.com
Sas, Editor Institute
Spad, DECISIA/SPAD https://www.test-and-go.com/fr/ct
Splus, distribué par SIGMA PLUS http://statwww.epfl.ch/splus/
Statgraphics plus, distribué par SIGMA PLUS http://www.sigmaplus.fr
Statistica, Statsoft http://www.statsoft.com/french
HAUT DE PAGECet article fait partie de l’offre
Agroalimentaire
(257 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive