La technologie de séparation par adsorption constitue une des technologies de séparation les plus importantes, en particulier parmi les technologies qui ne sont pas basées sur l’équilibre vapeur-liquide. Elle est largement utilisée pour la séparation et la purification des gaz et des liquides dans des domaines très variés, allant des industries pétrolières, pétrochimiques et chimiques, aux applications environnementales et pharmaceutiques. Les applications industrielles typiques sont :
-
la production des gaz industriels (oxygène, azote, hydrogène) ;
-
la séparation des hydrocarbures (paraffines linéaires et ramifiés, par exemple) ;
-
les traitements de l’air, des eaux et des effluents pour l’élimination de polluants (pesticides, solvants chlorés, composés soufrés, odeurs, COV, métaux lourds...) ;
-
le séchage, la production de médicaments, etc.
La séparation par adsorption est basée sur une adsorption sélective (soit thermodynamique, soit cinétique) des différents constituants gazeux ou liquides par des adsorbants grâce à des interactions spécifiques entre les surfaces des adsorbants et les molécules adsorbées. Une des caractéristiques essentielles de la technologie d’adsorption réside dans son fonctionnement transitoire et généralement cyclique puisque, après une phase d’adsorption, les adsorbants doivent être régénérés partiellement ou complètement pour une prochaine utilisation. Les performances de séparation dépendent, d’une manière non triviale, non seulement des propriétés thermodynamiques, mais également des propriétés cinétiques et hydrodynamiques.
Les différents aspects des procédés d’adsorption font l’objet de deux articles séparés. Dans le premier article sont présentées les considérations théoriques des procédés d’adsorption tels que les adsorbants, la modélisation des isothermes d’adsorption, les phénomènes de transfert dans les grains d’adsorbant et les comportements dynamiques d’un lit (fixe) d’adsorbant. Les aspects plus pratiques des procédés d’adsorption sont traités dans l’article [J 2 731].