Présentation

Article

1 - CONTEXTE ET DOMAINES D’APPLICATION

2 - CONCEPTS PHYSICO-CHIMIQUES

3 - RÉSOLUTION MATHÉMATIQUE ET BASES DE DONNÉES

4 - APPLICATIONS AUX PROBLÈMES D’ENVIRONNEMENT

5 - CONCLUSION ET PERSPECTIVES

6 - QUELQUES DÉFINITIONS EN GÉOCHIMIE DE L’ENVIRONNEMENT

Article de référence | Réf : AF6530 v1

Applications aux problèmes d’environnement
Modélisation en géochimie des eaux - Concepts et applications en environnement

Auteur(s) : Laurent De WINDT, Jan van der LEE, Jean-Michel SCHMITT

Date de publication : 10 juil. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La compréhension, la quantification et la prédiction des milieux aquatiques (eaux naturelles ou découlant d’activités industrielles) sont complexes de par les réactions en présence. Ces études imposent une démarche de modélisation utilisant des données expérimentales et des méthodes numériques performantes. Cet article a pour objectif de présenter les concepts physico-chimiques et les lois mathématiques sur lesquels repose la modélisation géochimique des eaux. En illustration, des exemples concrets d’applications aux problèmes d’environnement et de gestion des ressources en eau sont exposés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Laurent De WINDT : Docteur en chimie, Enseignant-chercheur à l’École des Mines de Paris

  • Jan van der LEE : Docteur en hydrogéologie-hydrochimie, Enseignant-chercheur à l’École des Mines de Paris

  • Jean-Michel SCHMITT : Docteur ès sciences, Maître assistant à l’École des Mines de Paris - Centre d’Informatique Géologique à Fontainebleau

INTRODUCTION

La géochimie des eaux, naturelles ou découlant des activités industrielles, représente un ensemble complexe de réactions en solution, de réactions de dissolution et précipitation de minéraux et de réactions aux interfaces. Elle concerne des espèces aussi diverses que des acides, bases, complexants et couples oxydoréducteurs dissous, des phases solides constitutives des roches et des matériaux géosynthétiques, des colloïdes vecteurs de mobilité, des matières organiques. La compréhension, la quantification et la prédiction de tels milieux aquatiques requièrent une démarche de modélisation s’appuyant sur des bases de données expérimentales et des méthodes numériques sophistiquées. L’utilisation des logiciels hydro-géochimiques n’en demeure pas moins intuitive. Elle est de plus en plus fréquemment intégrée aux études appliquées aux expériences en laboratoire, à la gestion des ressources en eaux, des sites miniers et des stockages de déchets, aux études d’impact environnemental.

L’objectif de ce document est de fournir l’essentiel des concepts physico-chimiques et des lois mathématiques sur lesquels reposent la modélisation géochimique des eaux, tout en y associant des exemples concrets et typiques d’applications aux problèmes d’environnement et de gestion des ressources en eau. Un tableau est dédié aux sources de distribution des logiciels et des banques de données thermodynamiques.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af6530


Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Applications aux problèmes d’environnement

Ce paragraphe traite de quelques exercices simples destinés à illustrer diverses applications des codes de géochimie des eaux aux domaines naturels et industriels. Les calculs et les graphes ont été obtenus avec le logiciel géochimique JCHESS [12].

4.1 Eaux naturelles et processus tampons

Les codes hydro-géochimiques peuvent servir à l’interprétation des analyses chimiques des eaux naturelles. Le cycle de l’eau en milieu naturel fait l’objet d’un article des Techniques de l’Ingénieur [13]. Nous nous intéresserons directement ici à la chimie de ces eaux.

Le tableau 5 reprend à titre d’exemple le résultat d’un calcul effectué d’après les données de l’analyse élémentaire d’une eau potable de la région de Fontainebleau. Les espèces sont classées par ordre décroissant de concentration. Y sont également rapportés les minéraux dont les indices de saturation calculés sont proches de l’équilibre, c’est-à-dire en pratique vu les multiples incertitudes ceux pour qui − 0,5 < IS < 0,5.

Le type chimique d’une eau se détermine en fonction de l’anion et du cation dominants. Dans notre cas, une eau dont l’anion dominant est le bicarbonate et le cation dominant le calcium sera qualifiée de bicarbonatée-calcique. La température et le pH sont des valeurs mesurées imposées dans le calcul, tandis que le potentiel redox et la force ionique dérivent de la simulation. L’eau est oxydante, du fait de la présence d’oxygène dissous, et faiblement minéralisée. La solution est équilibrée avec la calcite et la dolomite, minéraux typiques des aquifères calcaires, et avec la calcédoine qui est une variante du quartz (lui-même sursaturé) fréquente dans les systèmes de subsurface. Le gypse est dans un état de sous-saturation et il n’est probablement pas présent dans l’aquifère.

La chimie de l’eau du tableau 5 est tamponnée par le système des carbonates qui joue souvent un rôle majeur dans la régulation des eaux naturelles. Les réactions tampons sont toujours de première importance chaque fois qu’un fluide naturel rencontre un milieu géochimique avec lequel il n’est pas à l’équilibre, ou qu’un fluide modifié par l’activité anthropique interfère avec...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications aux problèmes d’environnement
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CORRIOU (J.C.) -   Thermodynamique chimique. Équilibres thermodynamiques  -  . Techniques de l’Ingénieur[J 1 028].

  • (2) - SIGG (L.), STUMM (W.), BEHRA (P.) -   Chimie des milieux aquatiques. Chimie des eaux naturelles et des interfaces dans l’environnement  -  . Masson, Paris (F), 1994.

  • (3) - MICHARD (G.) -   Équilibres chimiques dans les eaux naturelles  -  . Publisud, France, 1989.

  • (4) - GRENTHE (I.), PUIGDOMENECH (I.) -   Modeling in aquatic chemistry  -  . OECD Publishing, Paris (F), 1997.

  • (5) - VAN der LEE (J.) -   Thermodynamic and mathematical concepts of CHESS  -  . Tech. Rep. LHM/RD/98/39, École des Mines de Paris, Fontainebleau (France) (1998).

  • (6) - HOUNSLOW (A.W.) -   Water quality data. Analysis and interpretation  -  . CRC Press, New York (US), 1995.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS