Le but de la physique des particules est d’étudier la structure ultime de la matière. C’est donc une physique de l’infiniment petit et, d’un point de vue expérimental, une physique des hautes énergies.
Les microscopes utilisés dans ce cadre sont les accélérateurs de particules qui produisent des faisceaux de plusieurs centaines de GeV [au LEP (Large Electron Positron), entre 1989 et 2000], voire d’une dizaine de TeV [à partir de 2007 avec le LHC (Large Hadron Collider)] permettant ainsi d’étudier des objets dont la taille est inférieure au fermi et donc de sonder, par exemple, la structure d’un proton. Néanmoins, les techniques d’accélération actuelles ne permettent d’augmenter l’énergie d’un électron que de 20 à 30 MeV environ sur une distance de 1 m. Pour porter un électron, initialement produit au repos, à plus de 100 GeV, il faut donc des accélérateurs (linéaires ou circulaires) gigantesques. La physique des particules est également une physique des très grands instruments (TGI).
Pour l’ensemble de cette partie expérimentale, le lecteur pourra se reporter en premier lieu au dossier Particules élémentaires et interactions fondamentales qui traite d’une manière théorique « les particules élémentaires et les interactions fondamentales ». Il pourra aussi consulter les ouvrages donnés dans les références accessibles aux étudiants, ainsi que les sites web du CERN (Organisation européenne pour la recherche nucléaire) et de L’IN2P3 (Institut national de physique nucléaire et physique des particules) pour suivre les évolutions et s’informer des résultats les plus récents.