Présentation
En anglaisRÉSUMÉ
La complexité et le nombre grandissant d'appareils et de systèmes électriques ou électroniques, ont rendu l'étude de compatibilité électromagnétique (CEM) difficile. Deux approches pour cette étude sont généralement adoptées : soit aborder la CEM de manière pratique, en testant l'appareil en expérimentation, soit utiliser des outils de simulation numérique pour réaliser des expérimentations virtuelles sur des systèmes électroniques non accessibles à l'expérimentation concrète. Inconvénient majeur : ces deux méthodes offrent une analyse des résultats à un niveau uniquement intuitif. Cet article présente ainsi une autre démarche, celle basée sur des principes mathématiques formels et rigoureux, qui permet d'analyser correctement un système. Les méthodes sont ainsi efficaces, détaillées et précises, notamment elles indiquent comment diviser la complexité en sous-problèmes moins complexes ou encore comment exploiter l'identification des éléments influents.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The complexity and increasing number of electrical or electronic devices and systems have made the study of electromagnetic compatibility (EMC) complex. Two approaches for this study are generally adopted: either by approaching the EMC from a practical angle, by testing the device or by using numerical simulation tools in order to carry out virtual tests on electronic systems that are not accessible to concrete testing. The major drawback of these two approaches is that they only provide an intuitive analysis of results. This article thus presents another approach, based on formal and rigorous mathematical principles allowing for the correct analysis of a system. These methods are therefore efficient, detailed and precise; they notably show how complex problems can be divided into less complex subproblems or even how to exploit the identification of influential elements.
Auteur(s)
-
Olivier MAURICE : Senior Scientist au GERAC - Vice-président URSI commission E - Enseignant au CNAM de Versailles-Saclay
INTRODUCTION
Révolution exponentielle des usages et technologies de l'électronique conduit à une multiplication des phénomènes impactant la CEM (compatibilité électromagnétique) qui décourage nombre d'ingénieurs. Ainsi prédire la perturbation d'une fonction numérique sur une carte électronique moderne, comportant 16 couches, 1 000 pistes et 15 circuits, enfermée dans un boîtier métallique résonnant paraît être une tâche insurmontable. On peut citer également la difficulté qu'il peut y avoir à prévoir la perturbation d'une radio embarquée sur un véhicule, même avec la connaissance des caractérisations individuelles des différentes sources de bruits embarquées. Face à de telles complexités, beaucoup préfèrent alors aborder la CEM par la seule pratique et tentent de résoudre des problèmes parfois très complexes directement en expérimentation.
Les outils de simulation numérique sont une autre dimension récente du métier de la CEM. Bien utilisés, c'est-à-dire dans le strict périmètre de leurs capacités, ils permettent d'effectuer des expérimentations virtuelles sur des systèmes électroniques non accessibles à l'expérimentation concrète. Mais, dans les deux cas, l'analyse des résultats en restera à un niveau intuitif si un travail préalable sur la physique du problème n'a pas été effectué.
La démarche actuelle qui accompagne l'évolution vers la complexité des systèmes consiste à analyser un système sous le jour de la topologie. Le recensement des interactions sous forme de branches, de cordes, va permettre une identification des éléments influents et un découpage de la complexité en sous-problèmes moins complexes. C'est sur cette base mathématique formelle et rigoureuse que l'on peut résoudre les problèmes de CEM des systèmes actuels. Car la CEM est un métier qui ne tolère pas les approximations. Par exemple, on entend dire que « connecter une liaison à la masse résout tous les problèmes ». Mais qu'est-ce qu'une masse ? Qu'est-ce qu'un potentiel ? Est-il possible de mesurer un potentiel ou une différence de potentiel ? Le métier de la CEM pousse rapidement l'ingénieur électronicien curieux dans ses derniers retranchements. Et s'il accepte de jouer ce jeu, plutôt que de se laisser aller à quelques intuitions ou approximations grossières, il trouve là matière à progresser constamment dans tous les domaines si passionnants de l'électronique. Tous les auteurs des articles sur la CEM sont là pour en témoigner et nous espérons par leur biais communiquer soit les informations nécessaires à un ingénieur pour avancer dans ses problèmes de CEM, soit la passion de ces mêmes auteurs pour leur métier.
Cette préface vise à introduire l'ensemble des articles qui couvrent la problématique de la compatibilité électromagnétique depuis la phase d'appel d'offres jusqu'à la phase d'industrialisation. Les deux premiers articles portent sur les fondamentaux nécessaires en prérequis pour une bonne lecture des articles suivants.
VERSIONS
- Version archivée 1 de juin 1993 par Peter HAWKES
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Electronique > Optique électronique > Objectifs des articles sur la CEM
Cet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Objectifs des articles sur la CEM
Toutes ces tâches effectuées, le projet a parcouru un cycle de développement complet. Ce cycle incorpore divers acteurs présents chez diverses entités, depuis le fondeur jusqu'à l'intégrateur et diverses équipes ou personnes en charge de la CEM à chaque étape. Chacun de ces techniciens ou ingénieurs trouvera dans cette série d'articles les éléments de réponse à ses questions, ou les pistes pour éclaircir certains points ou trouver des solutions efficientes. Certes, tout ouvrage ne peut être omniscient dans son domaine, mais nous espérons aborder suffisamment de thématiques classiques ou modernes de la CEM, pour que tout un chacun puisse trouver des méthodes et techniques (peut-être appliquées à des systèmes différents) présentées de façon générique, de telle sorte que les notions soient réexploitables dans tous les cas.
Compatibilité électromagnétique. Notions fondamentales [E1302] : cet article présente les prérequis fondamentaux nécessaires à la bonne compréhension des articles suivants dans la thématique de la compatibilité électromagnétique. Il couvre les notions de statiques, flux, phénomènes conduits, champs et antennes, cavités, dipôles rayonnants et rayonnements particulaires.
Notions de CEM système [E1305] : cet article aborde la topologie et son usage pour la CEM des systèmes. La topologie permet de réduire la complexité et de résoudre la CEM de systèmes enchevêtrés...
Cet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Objectifs des articles sur la CEM
BIBLIOGRAPHIE
-
(1) - DARRIGOL (O.) - Les équations de Maxwell, - Édition Belin, p. 171 (2005).
-
(2) - METZER (G.), VABREN (J.-P.) - Électronique des impulsions, - édition MASSON (1985).
-
(3) - TISSOT (C.) - , Étude de la résonance des systèmes d'antennes, - P. Gauthier-villars, in-8 br., 207 pp. Thèse de Doctorat – Faculté des Sciences – Paris.[C1] (1905).
-
(4) - AMOUDRY (M.) - Le général Ferrié et la naissance des transmissions et de la radiodiffusion, - Presses universitaires de Grenoble, Grenoble, 1993 (ISBN 2-7061-0497-X, 9782706104978).
-
(5) - Electromagnetic Waves in Conducting Tubes, - Phys. Rev. 52, 1078-1078 (nov. 1937).
-
(6) - MAURICE (O.) - La compatibilité électromagnétique des systèmes complexes - ...
DANS NOS BASES DOCUMENTAIRES
-
Présentation générale de la compatibilité électromagnétique.
-
La compatibilité électromagnétique dans les circuits intégrés.
ANNEXES
Union Radio Scientifique Internationale, commission E (Environnement électromagnétique et interférences) https://www.ursi-france.org/accueil
HAUT DE PAGECet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive