Présentation

Article

1 - LES ÉVALUATIONS : POURQUOI, POUR QUI ?

2 - LES ÉVALUATIONS : COMMENT ?

3 - TYPES DE MESURES DES DONNÉES

4 - MODÉLISATION DES DONNÉES NUCLÉAIRES : LES SECTIONS EFFICACES DE RÉACTION

5 - ASSIMILATION DES DONNÉES EXPÉRIMENTALES ET DES MODÈLES : INFÉRENCE BAYÉSIENNE

  • 5.1 - Principes généraux
  • 5.2 - Résolution analytique
  • 5.3 - Résolution par la méthode de Monte-Carlo

6 - QUELQUES EXEMPLES

7 - PERSPECTIVES D’AVENIR POUR L’ÉVALUATION

8 - CONCLUSION

Article de référence | Réf : BN3008 v1

Les évaluations : pourquoi, pour qui ?
Physique des réacteurs – Modélisation et évaluation des sections efficaces

Auteur(s) : Eric BAUGE, Cyrille de SAINT JEAN, Stéphane HILAIRE, Anne NICOLAS

Date de publication : 10 juil. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Première partie d’un ensemble de deux articles exposant le processus d’évaluation des données nucléaires, cet ensemble présente l’état actuel de la connaissance théorique des phénomènes de physique nucléaire mis en jeu. Lors de l’évaluation, la connaissance théorique et expérimentale est condensée et synthétisée dans des fichiers informatiques utilisés par les codes de simulation. Après un survol du contenu des fichiers évalués, nous décrivons les différentes méthodes utilisées pour l’évaluation des données nucléaires. Nous exposons particulièrement leur modélisation. Des exemples tirés de la pratique quotidienne de l’évaluation sont présentés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Reactor Physics - Modeling and Evaluation of Cross Section

This article is the first part of a two part review presenting the nuclear data evaluation process. It describes the present state of the theoretical knowledge of the nuclear physics processes involved in reactor physics. During the evaluation process, the theoretical and experimental knowledge is distilled and synthetized into the files used by simulation codes. After an overview of the content of the evaluated files, the different methods used for nuclear data evaluation are described. We will mainly focus on modeling. This review is illustrated by examples chosen from everyday practice of nuclear data evaluation.

Auteur(s)

  • Eric BAUGE : Ingénieur-chercheur - Commissariat à l’énergie atomique et aux énergies alternatives, Bruyères-le-Châtel, France

  • Cyrille de SAINT JEAN : Ingénieur-chercheur - Commissariat à l’énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France

  • Stéphane HILAIRE : Ingénieur-chercheur - Commissariat à l’énergie atomique et aux énergies alternatives, Bruyères-le-Châtel, France

  • Anne NICOLAS : Ingénieur-chercheur - Commissariat à l’énergie atomique et aux énergies alternatives, Saclay, France

INTRODUCTION

Dans les années 1920-1940, le foisonnement théorique et expérimental de la physique nucléaire, discipline alors en plein essor, a également dû répondre au besoin de maîtrise de l’énergie atomique. En effet, quantifier et maîtriser la réaction en chaîne dans un système nucléaire nécessite la résolution d’équations décrivant le comportement du flux de neutrons et l’évolution des concentrations des différents noyaux ; équations dont les coefficients sont des constantes appelées « données nucléaires ». Cette thématique est donc primordiale depuis fort longtemps. Cet objectif correspond à ce qu’Emilio Segrè appelait avoir de « bons nombres » : “In an enterprise such as the building of the atomic bomb the difference between ideas, hopes, suggestions and theoretical calculations, and solid numbers based on measurement, is paramount.” Ce concept était déjà associé à cette époque à la nécessité de développer des approches théoriques (modèles de réactions nucléaires, fission), d’initier la mesure d’observables physiques fondamentales par le biais d’expériences microscopiques, et, très rapidement, de mettre en place des expériences dites « intégrales » (par exemple mesure de masse critique, etc.). Ces trois piliers caractérisent encore aujourd’hui l’activité d’évaluation des données nucléaires.

Les données nucléaires continuent à jouer un rôle essentiel, au même titre que les méthodes numériques et les algorithmes associés, dans les calculs de conception et d’analyse de toutes les applications de l’énergie nucléaire, de la radioprotection à la criticité. En raison de la réduction des biais de calcul due aux progrès des sciences du numérique (mathématiques appliquées, génie logiciel, informatique…), la dépendance des résultats à la qualité des données nucléaires devient prépondérante.

Cet article est consacré au processus d’évaluation de ces données, en insistant sur les phénomènes physiques de base, dont certains éléments de modélisation sont encore perfectibles. L’objectif de ce processus est l’obtention de grandeurs utilisables par les codes de calcul de neutronique, qui permettent la conception et l’analyse des systèmes nucléaires, en particulier les réacteurs. L’évaluation combine modèles de physique, techniques mathématiques et informatiques, expériences destinées à l’obtention de grandeurs et à la validation de l’ensemble à divers niveaux. Les sections efficaces à petit nombre de groupes ont été utilisées très tôt, pour des applications militaires et exploratoires, avec des outils de calcul sommaires. Depuis les premières bibliothèques de sections efficaces destinées aux codes de calcul des années 1960-1970, le processus a considérablement évolué vers l’emploi de modèles de plus en plus fins, de plus en plus prédictifs, mais la complexité globale est telle qu’il est encore illusoire de remplacer l’ensemble par des calculs depuis les premiers principes. L’objectif de ce qui suit est d’expliciter la démarche et de donner des pistes de réflexion pour améliorer l’ensemble vers toujours plus de précision et de pouvoir prédictif.

La bonne compréhension de cet article nécessite la lecture préalable de l’article qui donne les éléments de physique nucléaire de base et les ordres de grandeur utiles [BN 3 010]. L’article concernant les réactions nucléaires donne également nombre d’informations utiles [BN 3 011].

De façon complémentaire à ces deux articles, « opérationnels » et directement utilisables par un physicien des réacteurs, celui-ci vise à soulever le voile sur le processus d’élaboration des données nucléaires, en amont de leur traitement pour une utilisation dans les codes de calcul de physique appliquée.

Cet article pose également les bases utiles à l’évaluation des incertitudes, qui constitue dès aujourd’hui et de façon croissante la pierre de touche de tout dimensionnement.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

modeling   |   nuclear data   |   simulation codes   |   evaluated files

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bn3008


Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Les évaluations : pourquoi, pour qui ?

1.1 Rappels sur la neutronique

L’objectif de la neutronique est de résoudre les équations qui décrivent la population des neutrons dans un réacteur en fonctionnement, ainsi que l’évolution des isotopes qui s’y trouvent. Ces équations sont principalement l’équation de Boltzmann qui décrit la population des neutrons et son évolution au cours de la vie du réacteur et le système d’équations de Bateman qui permet de calculer l’évolution des concentrations des isotopes présents ou créés dans le réacteur et subissant le flux de neutrons précédemment calculé.

L’équation de Boltzmann s’écrit :

( 1 )

que l’on appelle le flux des neutrons (exprimé en n/cm2/s) est l’inconnue du problème.

Les termes Σ, Σ s , χ s , νx et Σ f,x possèdent une dépendance aux données nucléaires de base (sections efficaces…) et aux concentrations isotopiques des constituants des matériaux.

Les équations qui régissent l’évolution des isotopes au cours du temps sous flux neutronique, dites de Bateman, s’écrivent pour l’ensemble des noyaux :

( 2 )

L'opérateur A est une matrice qui dépend des champs de sections efficaces, du champ de flux (spectre et normalisation) et des champs de constantes de désintégration (λ) :

( 3 )

c(t) est le vecteur densité des nucléides...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Les évaluations : pourquoi, pour qui ?
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ENDF-6 -   Format Manual, data format and procedures for the evaluated data files,  -  rapport BNL-90365-2009 Rev. 1, Brookhaven National Laboratory, USA (2010).

  • (2) -   International handbook of evaluated criticality safety benchmark experiments,  -  NEA/NSCDOC(95)03, Nuclear Energy Agency Paris (2018).

  • (3) - WIGNER (E.P.), EISENBUD (L.) -   Higher Angular Momenta and Long Range Interaction in Resonance Reactions,  -  Phys. Rev. 72, 29-41 (1947).

  • (4) - HUMBLET (J.), ROSENFELD (L.) -   Theory of nuclear reactions: I. Resonant states and collision matrix,  -  Nucl. Phys. 26, 529-578 (1961).

  • (5) - LANE (A.M.), THOMAS (R.G.) -   R-Matrix Theory of Nuclear Reactions,  -  Rev. Mod. Phys. 30, 257-353 (1958).

  • (6) - REICH (C.W.), MOORE (M.S.) -    -  Phys....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS