La mécanique de la rupture permet d’étudier le comportement d’une fissure dans un matériau ou une structure, et en particulier de mettre en place des critères de propagation, ou de non-propagation. Pour mettre en place ces critères de propagation, il est nécessaire d’introduire la notion de ténacité, et en particulier le taux de restitution d’énergie critique, caractérisant la capacité d’un matériau à résister à l’avancement d’une fissure. Cette notion de ténacité est fondamentale pour le dimensionnement des structures, et en particulier pour leur dimensionnement à la tolérance aux dommages, c’est-à-dire pour le dimensionnement d’une structure présentant déjà un dommage, ce qui est en général le cas pour les structures composites.
La mécanique de la rupture a été introduite dans les années 1920 par A.A. Griffith et largement reformulée et précisée par G.R. Irwin dans les années 1950 pour les matériaux métalliques isotropes homogènes. Elle a maintenant largement fait ses preuves et est couramment utilisée dans l’industrie. Son application aux structures composites stratifiées reste néanmoins un domaine complexe et relativement récent qui implique une nécessaire prudence, en raison de leur caractère fortement anisotrope et hétérogène. Les structures composites sont en effet des matériaux complexes, qui présentent déjà à l’échelle du pli élémentaire, des caractéristiques de structure. En particulier, les ténacités associées aux différents modes de rupture des composites (par exemple le délaminage) dépendent d’un grand nombre de paramètres : géométrie, type et orientation des plis inférieurs et supérieurs, vitesse de sollicitation, sollicitation en compression. La compréhension physique de ces mécanismes de rupture est nécessaire pour aborder la modélisation numérique de ce type d’endommagement.
Cet article présente la mécanique de la rupture appliquée aux composites stratifiés. Les composites étant fragile, il peut apparaître des fissures, en particulier des délaminages, dans des zones particulières telles que les bords libres, les reprises de plis ou lorsqu’ils sont soumis aux impacts. Après une rapide présentation de la mécanique de la rupture appliquée aux composites, le délaminage, et en particulier le taux de restitution d’énergie critique, est présenté, ainsi que l’effet de différents paramètres tels que la direction des plis adjacents, la contrainte de compression ou la vitesse de sollicitation. Enfin une discussion sur le couplage entre la fissuration matricielle et le délaminage est menée.