C’est généralement dans les applications de pompages d’hydrocarbures, de fluides chargés pour la chimie, voire de fluides alimentaires ou encore pour les besoins de captage d’eau potable ou d’irrigation que l’on peut observer l’existence d’écoulements diphasiques dans les pompes. C’est également le cas des systèmes de pompage d’urgence pour la sécurité nucléaire ou lors d’utilisation des pompes en cas d’inondations. Pour des pompes à usages plus classiques, il peut arriver que ce type de situation provienne, par exemple, de paliers en mauvais état, laissant passer, par exemple, du gaz au travers des garnitures.
Sont exclus de cet article les cas des écoulements avec cavitation. Bien que ces derniers fassent partie des écoulements diphasiques au sein d’une pompe, les phénomènes physiques qui sont à l’origine des changements de phase sont associés aux modifications de la pression locale dans la pompe. Cela n’est pas pris en compte pour la présente étude, car le mélange diphasique est considéré déjà existant en amont de la pompe y compris pour de grandes valeurs de la pression initiale.
Par soucis de simplification, on fait ici le choix de présenter les conséquences d’un écoulement diphasique et plus particulièrement d’un mélange initial liquide-gaz non miscible pour décrire et comprendre les phénomènes mis en jeu. Ces types d’écoulements sont toujours très difficiles à appréhender, compte tenu de la diversité des géométries rencontrées (machines radiales, mixtes ou axiales), de leur configuration (mono ou multi-étagées), des structures et interactions entre les phases et aussi pour la grande quantité de variables impliquées. Des approches pour modéliser les comportements des mélanges dans les pompes existent, mais ne sont pas exposées dans cet article.