Article de référence | Réf : AF603 v1

Estimation de la densité de probabilité par la méthode du noyau
Estimation fonctionnelle

Auteur(s) : Denis BOSQ

Date de publication : 10 oct. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article expose les principales méthodes d’estimation fonctionnelle non paramétrique. Les modèles paramétriques présentent en général un paramètre d’intérêt de dimension infinie ; le plus souvent ce paramètre est une fonction que l’on cherche à estimer. Sont étudiées plus particulièrement les méthodes de la densité par projection, de la fonction de répartition, ainsi que celles de la densité spectrale. Ces méthodes présentent le grand intérêt de résister aux changements de modèles. Elles permettent aussi de guider le statisticien dans le choix d'un modèle paramétrique ; enfin, elles possèdent l’avantage d’être très efficaces pour la prévision. Quelques applications permettent l’illustration concrète de cette présentation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

This article presents the non-parametric functional estimation methods. These parametric model present, in general, a parameter of interest in the infinite dimension; most often this parameter is a function that one tries to estimate. It particularly focuses on the density by projection , distribution function and spectral density methods. These methods are of great interest being resistant to changes in models. They also allow for assisting statisticians in choosing a parametric model and are very efficient for forecasting. This presentation is illustrated by several applications.

Auteur(s)

  • Denis BOSQ : Professeur émérite à l’université Pierre-et-Marie-Curie, Paris 6

INTRODUCTION

Dans cet article, nous exposons les principales méthodes d’estimation fonctionnelle non paramétrique. Ces méthodes ont l'avantage d'être robustes : elles résistent bien aux changements de modèles ; elles permettent aussi de guider le statisticien dans le choix d'un modèle paramétrique ; enfin, elles sont très efficaces pour la prévision. En particulier, nous étudierons l’estimation de la fonction de répartition, de la densité, de la régression et de la densité spectrale. Quelques applications sont données au cours du texte.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af603


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

4. Estimation de la densité de probabilité par la méthode du noyau

L’estimation de la fonction de densité joue un rôle central en estimation fonctionnelle ; le problème est difficile et les applications sont nombreuses.

La situation est la suivante : on observe des variables aléatoires réelles X1,…, Xn indépendantes et de même loi μ de densité f inconnue, on a donc :

La fonction f est positive ou nulle et vérifie . On veut estimer f dans un cadre non paramétrique : la famille F des densités possibles est suffisamment vaste pour ne pas être associée à un paramétrage naturel.

Dans ce cadre, les méthodes d’estimation classiques ne sont plus utilisables. Nous avons vu que la « densité empirique » n’existe pas puisque la loi empirique μn est une loi discrète.

La méthode du maximum de vraisemblance échoue car, pour une famille F vaste, le maximum de la vraisemblance est en général infini.

Quant à la recherche d’un estimateur sans biais, elle ne donne aucun résultat car on peut montrer qu’un tel estimateur (supposé symétrique par rapport aux observations) serait la densité empirique .

4.1 Histogramme

L’histogramme est un estimateur primitif de la densité, basé sur une « pseudo-dérivée » de la f.d.r. empirique Fn : on se donne une suite (aj, j ∈ Z) où Z est l’ensemble des entiers algébriques, telle que … < aj < aj + 1 <… et

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Estimation de la densité de probabilité par la méthode du noyau
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERLINET (A.), DEVROYE (L) -   A comparison of kernel density estimates  -  Publ. Inst. Statist. Univ. Paris, 38 (3), p. 3-59 (1994).

  • (2) - BLANKE (D.), PUMO (B.) -   Optimal sampling for density estimation in continuous time  -  J. Time Ser. Anal., 24 (1), p. 1-24 (2003).

  • (3) - BOSQ (D.) -   Test du χ2 généralisés. Comparation avec le test du χ2 classique  -  Revue Statist. Appliquée, 37 (1), p. 43-52 (1989).

  • (4) - BOSQ (D.) -   Nonparametric statistic for stochastic processes. Estimation and prediction  -  Volume 110 of Lecture Notes in Statistics, 2nd edition, Springer-Verlag, New York (1998).

  • (5) - BOSQ (D.) -   Functional tests of fit. In Goodness-of-fit tests and model validity  -  Stat. Ind. Technol., Birkhäuser (éd. Huber-Carol), Boston MA, p. 341–356 (2002).

  • (6) - BOSQ (D.), BLANKE (D.) -   Inference...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS