Toute activité aujourd'hui – des entreprises, des organisations, des institutions – est synonyme de production ou de récolte de données pour conserver une trace de cette activité ou de celles de ses acteurs. Le monde de la recherche développe des méthodes propres à tirer profit de ces données, pour les fouiller, les analyser, les modéliser. L'activité de veille, qui conjugue récolte et analyse des données, est au cœur d'un processus permettant aux acteurs socio-économiques d'ajuster en permanence leur position et leur stratégie par rapport à leur environnement.
Les données ainsi récoltées et stockées sont souvent complexes, tout autant que les phénomènes dont elles dérivent, mais aussi souvent parce qu'elles sont non structurées. Les algorithmes de la fouille permettent de faire émerger de ces données des motifs structuraux ou des règles d'association, première forme de connaissances gagnées sur les données. Des entreprises sont intéressées à dessiner les profils de leurs clients pour mieux cibler leurs actions commerciales, par exemple ; des observateurs du débat public voudront identifier les acteurs déterminant les barycentres des opinions. Parce que les données sont massives et complexes, les résultats de la fouille le sont souvent tout autant. Il faut trier et classer ces résultats pour arriver à une synthèse utile pour la prise de décision, ou pour formuler une hypothèse explicative du phénomène étudié.
Le succès de l'opération de fouille tient à la possibilité de lire les motifs découverts. L'interprétation de ces motifs, l'évaluation de leur pertinence et du potentiel applicatif des résultats de la fouille reste une affaire bien humaine, dont la complexité et la subtilité ne peuvent à ce jour être confiées à un automate. Seul l'humain peut in fine juger de la pertinence d'un résultat, en apprécier le sens et l'impact potentiel, et le cas échéant prendre les bonnes décisions.
Le domaine de la visualisation d'information s'appuie au départ sur une observation fondamentale : environ 20 % de nos activités cérébrales sont consacrées au traitement de signaux visuels . Le défi qui se pose est donc de proposer à l'utilisateur une cartographie des données qui lui permet, d'une part de repérer visuellement les motifs devenus graphiques, et d'autre part de pouvoir agir sur la visualisation pour accéder aux données sous-jacentes ou modifier la représentation afin de comprendre la structure qui est exposée. C'est là le défi de la visualisation et l'enjeu qu'il y a à bien la concevoir et l'utiliser.
Il n'est donc pas étonnant de trouver la visualisation au rang des piliers technologiques des grands programmes de recherche nationaux et européens. Il y a 20 ans déjà, les agences américaines NIH et NSF en faisaient une priorité . La valeur ajoutée de la donnée et la valeur ajoutée de son exploitation dans toutes les sphères sociales et industrielles sont aujourd'hui le moteur du développement de la visualisation analytique.
Cet article commence par poser un regard historique sur les motivations du développement de la science de la visualisation analytique. La visualisation est ensuite présentée comme un processus issu de l'analyse de proximités entre les entités étudiées. Des exemples de visualisations maintenant classiques viennent illustrer le texte : projection de données multidimensionnelles, coordonnées parallèles, dessin de graphes, paradigme de pavage (« space-filling »), visualisation orientée pixel, vue matricielle. L'article se clôt sur une présentation d'approches émergentes proposant la combinaison de vues classiques de manières diverses : les visualisations hybrides. Les articles cités au long de l'article sont un bon point de départ pour connaître le détail des techniques présentées ici.