La résolution des équations d’un réseau de puissance, appelé calcul de réseau ou calcul de répartition, permet de déterminer l’état de ce réseau connaissant la puissance injectée. C’est en apparence un problème très simple : résoudre un système d’équations non linéaires dont l’énoncé peut être condensé en trois lignes.
La réalité est tout autre : on ne s’intéresse qu’à l’une des solutions du système, située, quand elle existe, dans un domaine restreint applicable pratiquement ; de nombreux automatismes compliquent la modélisation ; surtout, une grande vitesse d’exécution est indispensable, car on peut avoir un très grand nombre de problèmes à résoudre en temps réel dans des délais très courts. Sur ce dernier point, la chance a voulu que le système soit très creux, si bien que les techniques de calcul de réseaux et de matrices creuses ont évolué ensemble en s’aidant mutuellement.
L’interpénétration de ces techniques ne pouvait qu’apparaître au long de cet exposé, que l’on a ordonné de façon progressive, par ordre de difficulté croissante : après avoir situé le problème 1, on en présente l’énoncé et le principe de la résolution 2, abstraction faite de la complexité que l’on vient d’évoquer. Ensuite, un rappel des principaux résultats des techniques de matrices creuses 3 permet d’introduire la partie centrale de l’exposé : les algorithmes de résolution du calcul de répartition classique 4, sans souci d’applicabilité ni automatismes. Après un court paragraphe consacré à la cararactéristique réseau en réactif 5, utile dans la suite, on présente des extensions de l’énoncé classique 6 fournissant une solution applicable et tenant compte des automatismes, c’est-à-dire résolvant le problème réellement posé. Enfin, une dernière partie est consacrée à la présentation d’un exemple d’application 7 des méthodes de résolution présentées auparavant.