Contrairement aux autres domaines de l'acoustique (comportement vibratoire des sources, rayonnement, propagation, électroacoustique, etc.) qui peuvent être correctement abordés à partir de lois physiques fondamentales et de leur expression mathématique, l'acoustique des salles ne peut, en aucune manière, faire l'objet d'une modélisation décrivant mathématiquement le comportement du son dans une salle (cf. introduction de l'article [C 3360]). Pour suppléer à cette carence, les différents chercheurs qui se sont intéressés à cette question depuis l'Antiquité ont proposé une multitude de « petites formules » d'origine diverse destinées à évaluer l'importance relative d'une ou plusieurs variables en un point donné de la salle et pour une configuration bien définie. C'est ainsi que l'on dispose aujourd'hui d'un jeu de relations issues de considérations tantôt géométriques, tantôt statistiques, tantôt ondulatoires, mais le plus souvent empiriques ou psychophysiques.
Ces relations peuvent prédire la valeur d'une variable par différentes méthodes, mais ne sont que rarement concordantes sur le résultat et, de toute façon, quand elles le sont pour une configuration donnée, elles ne le sont plus dès lors qu'on s'écarte un tant soit peu de cette situation de référence (déplacement du point de mesure, de la bande de fréquence, variation du nombre d'auditeurs, de la température ...).
Il en résulte que la gestion de la multitude de relations spécifiques de l'acoustique des salles est une opération délicate qui demande, outre les connaissances de ces différentes lois, une aptitude particulière à sélectionner les plus pertinentes et à effectuer correctement les transitions qui les séparent ou les opposent. Si la difficulté rencontrée reste aisément contournable sur des petits locaux, il n'en est pas de même pour les salles complexes qui demandent une vision globale beaucoup plus conséquente. Nous avons vu dans les articles [BR1010] et [BE 1012] deux aspects d'une stratégie d'approche cohérente pour l'optimisation de certains paramètres de l'acoustique des ensembles complexes.
L'exemple proposé dans cet article [BR1014] illustre parfaitement toutes les phases d'une approche méthodologique et la conclusion fait ressortir le fait qu'un paramètre essentiel au départ (ici le prix) peut tout à fait être négligé dans la modélisation et entrer malgré tout de plain-pied dans le processus de mise en application et le respect du cahier des charges.
Linéariser le schéma de sonorisation d'une salle est une opération très complexe du fait qu'elle met en jeu un nombre incalculable de paramètres.
Les principaux sont :
-
tous les paramètres relatifs à l'acoustique de la salle ;
-
les paramètres relatifs aux caractéristiques des sources (caractéristiques de puissance, de rendement, de spectre, de directivité...) ;
-
les paramètres relatifs à leur disposition (nombre, position, orientation, niveaux relatifs) ;
-
les paramètres relatifs au couplage électroacoustique (réverbération, effet Larsen, annulations...) ;
-
les paramètres relatifs à la psychoacoustique des salles. (réverbération, clarté, spatialisation) ;
-
les paramètres relatifs à la répartition de l'énergie sonore (équilibre et homogénéité) ;
-
les paramètres relatifs aux coûts d'investissement, de fonctionnement et de maintenance.
Pour comprendre l'intérêt de la linéarisation, il suffit de rappeler que la sonorisation d'une petite salle implique la mise en jeu de plus de 100 paramètres, ce qui, dans l'hypothèse d'un traitement expérimental, représenterait 3100 (5.1047) configurations à tester !