Bien que les techniques de séparation et de détection soient de plus en plus performantes, l’analyse d’échantillons environnementaux nécessite généralement une étape de prétraitement. Celle-ci peut avoir différents objectifs comme la préconcentration des polluants en trop faibles teneurs pour être détectés directement, ou encore la purification de l’échantillon lorsque la matrice est trop complexe ou présente des interférents.
Les méthodes utilisées mettent en jeu des principes très différents selon les propriétés physico-chimiques des composés à extraire et la matrice de l’échantillon (eau, air, sols...). À titre d’exemple, la figure 1 présente un classement de micropolluants en fonction de leur polarité et volatilité ainsi que plusieurs techniques d’extraction/concentration en phase aqueuse relatives aux propriétés physico-chimiques des composés.
Bon nombre de ces méthodes sont basées sur des technologies anciennes comme l’extraction liquide/liquide par solvant. Cette technique est pourtant encore très utilisée car elle fait l’objet de nombreuses normes. Cependant, elle présente certains inconvénients comme l’entretien de la verrerie, l’utilisation de solvants parfois toxiques et le nombre d’étapes d’extraction qui peuvent conduire à des pertes. Ces caractéristiques contribuent à rendre difficile l’automatisation de l’analyse en raison des difficultés de couplage avec les techniques de séparation et de détection.
Actuellement, la tendance est plutôt de s’orienter vers des protocoles rapides, peu coûteux et automatisables. Cela permettrait d’évoluer plus facilement vers des méthodes de routine mais aussi d’envisager des systèmes de mesure sur site pour le contrôle d’effluents industriels.
Un point important est également de réduire le volume de solvants utilisés afin de minimiser les risques liés à la santé et à l’environnement.
Étant donné ces différents objectifs, l’extraction sur phase solide (SPE), qui s’est beaucoup développée à partir des années 1980, est apparue comme une alternative intéressante. Elle est, depuis, très largement utilisée pour la préconcentration de traces dans des milieux très dilués comme les eaux naturelles ou la purification d’échantillons. Une grande variété de phases, souvent de même nature que celles utilisées en chromatographie liquide, est actuellement disponible et, à condition de faire un choix approprié de l’adsorbant, il est possible d’extraire des micropolluants dans une large gamme de propriétés physico-chimiques (molécules non ionisées de différentes volatilités, molécules ionisées...).
Au début des années 1990, un nouveau développement de la SPE, la microextraction sur phase solide (SPME), créée par Pawliszyn [1] apparaissait sur le marché. Ce nouvel outil présente l’avantage d’être plus simple à mettre en œuvre que la SPE et de ne pas nécessiter de solvant ou d’appareillage spécifique pour la récupération par thermo-désorption des composés extraits.
Comme l’extraction sur phase solide, la SPME offre de nombreuses applications en environnement. Elle est notamment très utilisée pour le criblage de micropolluants organiques dans les eaux, domaine où les sensibilités obtenues permettent d’atteindre les seuils imposés par la réglementation.
Un autre domaine d’application de la SPME, moins étudié que l’analyse de l’eau, est la surveillance de la qualité de l’air. Dans ce contexte, cette technique permettrait de simplifier le prélèvement et l’analyse en comparaison avec les méthodes actuellement utilisées, tout en conservant des performances comparables.
Même si la SPME présente de nombreux avantages par rapport aux techniques couramment mises en œuvre pour la préconcentration de micropolluants dans l’eau et l’air, quelques limitations à son utilisation ont été observées et sont présentées ici. Des recherches complémentaires sont donc nécessaires pour mieux définir le cadre d’application de cette technique mais aussi, de façon plus générale, pour tenter de faire évoluer les méthodes d’extraction sur phase solide. Dans ce contexte, de nouvelles techniques apparaissent sur le marché comme la « Stir-Bar Extraction » (SBE), le « SnifProbe », etc. Les objectifs sont de toujours améliorer les performances, notamment en terme de sensibilité, mais aussi de simplifier les protocoles d’extraction afin de mieux répondre aux besoins actuels en matière de métrologie.