Article

1 - BREF HISTORIQUE

2 - QUELQUES EXEMPLES

3 - FORME DE LAX

  • 3.1 - Systèmes à un nombre fini de degrés de liberté
  • 3.2 - Systèmes continus à un nombre infini de degrés de liberté
  • 3.3 - Problème inverse
  • 3.4 - Données de diffusion
  • 3.5 - Équation de Gelfand-Levitan
  • 3.6 - Évolution des données de diffusion
  • 3.7 - Notion de hiérarchie

4 - SOLUTION À N SOLITONS

5 - CONCLUSION

Article de référence | Réf : AF163 v1

Solitons et systèmes intégrables

Auteur(s) : Michel TALON, Claude-Michel VIALLET

Date de publication : 10 avr. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Une « onde solitaire », d’après la définition de John Scott Russel, désigne la propagation d’une onde, sur une longue distance et sans déformation. La théorie linéaire de la propagation d’ondes à la surface de l’eau ne peut expliquer ce phénomène. Cet article décrit tout d’abord un certain nombre de situations expérimentales ayant conduit à l’introduction d’équations non linéaires aux propriétés inhabituelles. Ces familles de solutions mathématiques possèdent des lois de conservation qui expliquent le comportement et la stabilité remarquables des solitons. Est également présentée brièvement la méthode du problème inverse qui permet de résoudre de telles équations et, en particulier, de décrire les solutions solitoniques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Solitons and integrable systems

According to the definition by John Scott Russel, a "solitary wave" refers to the propagation of a wave on a long distance without any deformation. The linear theory of wave propagation at the surface of water cannot explain this phenomenon. This article starts by describing a certain number of experimental situations which have led to the introduction of non-linear equations with unusual properties. These families of mathematical solutions have conservation laws that explain the behavior and remarkable stability of solutions. The inverse problem method which allows for solving such equations and in particular describing solitonic solutions is also presented.

Auteur(s)

  • Michel TALON : Chargé de recherches au CNRS

  • Claude-Michel VIALLET : Directeur de recherches au CNRS

INTRODUCTION

Le terme soliton vient de l'observation par John Scott Russell, communiquée à la Royal Society d'Edimbourgh en 1834, de ce qu'il a appelé à l'époque une « onde solitaire » (solitary wave) : une vague s'est formée à la proue d'une barge et a continué sa course pendant plus d'un kilomètre, sans déformation, avec une vitesse relativement importante et constante.

Le phénomène est similaire au mascaret et aux raz de marée. Sa compréhension, et sa description par une équation, s'est faite très progressivement. Nous présenterons autant que possible la modélisation par des équations plutôt que la description superficielle du phénomène. La théorie linéaire de la propagation d'ondes à la surface de l'eau, qui contient des termes dispersifs, n'explique pas la propagation sans déformation de l'onde solitaire. Cette onde devrait s'étaler et disparaître et il a été nécessaire de donner une autre description mathématique.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af163


Cet article fait partie de l’offre

Mathématiques

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOUSSINESQ (J.) -   Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire  -  C.R.A.S. p. 72-73 (1871).

  • (2) - KORTEWEG (D.J.), DE VRIES (G.) -   On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves  -  Philosophical Magazine, 5th series, 39, p. 422-443 (1895).

  • (3) - FERMI (E.), PASTA (J.), ULAM (S.) -   Studies of non linear problems  -  Doument LA-1940 (1955).

  • (4) - ZABUSKY (N.J.), KRUSKAL (M.D.) -   Interaction of solitons in a collisionless plasma and the recurrence of initial states  -  Physics Rev. Lett. 15, p. 240-243 (1965).

  • (5) - GARDNER (C.S.), GREENE (J.M.), KRUSKAL (M.D.), MIURA (R.M.) -   Method for solving the Korteweg-de Vries equation  -  Physics Rev. Lett. 19, p. 1095-1097 (1967).

  • (6) - LAX (P.) -   Integrals...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS