Les matériaux électrocaloriques permettent de convertir l’énergie électrique en énergie thermique. Ils présentent la faculté de voir leur entropie varier de manière réversible sous l’action d’un champ électrique : la polarisation induite par le champ électrique est responsable, dans la majorité des cas, d’un ordre plus élevé au sein du matériau, associé à une diminution d’entropie. Les types de matériaux peuvent être des monocristaux et des céramiques (sous forme massive, en couche épaisse ou en couche mince), ainsi que des polymères. En l’absence d’échange thermique (cas adiabatique), la température du matériau peut ainsi varier de plusieurs degrés, voire plusieurs dizaines de degrés par l’application de forts champs électriques.
La recherche sur les matériaux électrocaloriques s’est fortement développée au début des années 2000 après quelques réalisations dès les années 1970. L’effet alors mesuré étant trop faible pour être exploitable pratiquement, c’est le développement des structures de faibles épaisseurs (couches minces et polymères) qui a permis d’obtenir de grandes rigidités diélectriques et des effets électrocaloriques importants.
Pour certains matériaux, la variation d’entropie est ainsi suffisante pour déplacer de l’énergie thermique d’une source froide vers une source chaude. Le matériau électrocalorique constitue le cœur d’un dispositif de refroidissement à l’état solide, véritable machine thermique pouvant concurrencer les autres dispositifs de réfrigération (systèmes de compression/détente de gaz, évaporation, effet thermoélectrique, effet magnétocalorique, etc.). L’avantage de tels dispositifs est l’absence de fluide frigorifique, permettant une meilleure intégration et une disposition plus compacte. En comparaison aux matériaux thermoélectriques, dont le rendement atteint difficilement plus de 10 % en pratique, les matériaux électrocaloriques présentent théoriquement un fonctionnement réversible menant à une efficacité énergétique proche du cycle idéal de Carnot.
À ce stade, peu de démonstrateurs électrocaloriques expérimentaux ont été présentés, les recherches s’étant pour l’instant concentrées sur le matériau lui-même. En revanche, les cycles régénératifs développés pour l’application de l’effet magnétocalorique peuvent se transposer au cas électrocalorique.
Cet article présente une revue des propriétés électrocaloriques de nombreux matériaux existants, après avoir défini quelques éléments théoriques permettant de comprendre la quantification de ces effets, et les techniques expérimentales de caractérisation.