Article de référence | Réf : H7020 v1

Analyse et reconnaissance d’images de documents

Auteur(s) : Rolf INGOLD

Date de publication : 10 août 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Rolf INGOLD : Professeur - Département d’informatique, université de Fribourg (Suisse)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L’analyse et la reconnaissance d’images de documents désignent une discipline scientifique qui regroupe un ensemble de techniques informatiques dont le but est de reconstituer le contenu d’un document à partir de son image. Alors qu’elle est longtemps restée cantonnée dans la problématique de la reconnaissance de caractères, elle vise aujourd’hui des objectifs beaucoup plus larges, allant de la simple classification de documents à l’interprétation complète du contenu en passant par l’indexation ou la réédition. Ainsi, le but ultime de la reconnaissance d’images de documents est de générer une représentation de haut niveau sous la forme de documents structurés, selon une forme adéquate pour l’application visée.

À titre introductif, considérons par exemple une page tirée d’un livre scientifique (figure 1 a ) qu’il s’agirait d’« hypertextualiser », c’est-à-dire d’en produire une version électronique munie des liens hypertexte pour la navigation. Dans une telle application, il est impératif de déterminer la structure logique de l’ouvrage, c’est-à-dire son organisation hiérarchique en chapitres, sections et paragraphes, d’identifier les définitions, les énoncés d’exercices, les descriptions d’expériences, les formules, etc. La figure 1 b reflète visuellement cette structure au niveau de la page alors que la figure 1 c illustre la structure hiérarchique qui en découle. C’est cette structure qui pourra être exploitée lors de la navigation dans l’hypertexte.

Traditionnellement, la reconnaissance de documents s’est avant tout appliquée aux documents papier pour lesquels aucune forme électronique n’était disponible. Aujourd’hui, on reconnaît l’intérêt de ces techniques pour la restructuration de documents électroniques, non ou mal structurés, en se servant de l’image produite de manière synthétique, par exemple à l’aide d’un moteur d’impression Postscript.

Sur le plan historique, il est intéressant de remarquer que la lecture optique de caractères est bien antérieure au développement de l’informatique puisque des brevets ont déjà été déposés au XIX e siècle et qu’un prototype de démonstration a été signalé en 1916. Les premières approches informatiques de la reconnaissance de caractères remontent au début des années 1960 ; ainsi, la première machine à trier le courrier (limitée aux adresses dactylographiées) a été installée aux États-Unis en 1965. Cependant, les développements importants remontent à l’avènement de la bureautique dans les années 1980 [1], avec l’apparition des ordinateurs personnels, des écrans graphiques, des imprimantes à laser et surtout les scanners plats. Depuis, les applications pratiques n’ont cessé de croître ; l’augmentation considérable des capacités de stockage d’information et, parallèlement, la réduction de leur coût a créé des besoins gigantesques pour la constitution de bibliothèques numériques, de systèmes documentaires en ligne [2] ou, plus simplement, pour l’archivage.

Malgré l’intérêt pratique du domaine, les résultats obtenus à ce jour sont loin d’être parfaits. La reconnaissance de documents reste un problème complexe qui bute sur des difficultés encore non résolues et faisant actuellement encore l’objet de nombreuses recherches.

Plusieurs facteurs sont à l’origine de ces difficultés. Pour commencer, il faut mentionner l’absence d’un objectif universel, simple à formuler, ainsi que l’insuffisance des modèles de représentation de connaissances permettant d’orienter l’analyse. En effet, les résultats souhaités dépendent fortement de l’application visée, et des connaissances spécifiques à la classe de documents

considérée sont nécessaires. La formalisation du problème joue un rôle capital ; il s’agit d’établir de manière précise les structures à déterminer et leurs caractéristiques. Mais elles sont en général difficiles à formuler et, par manque d’outils adéquats, la constitution de ces connaissances s’avère trop coûteuse dans beaucoup de cas. De plus, la pratique montre que les systèmes de reconnaissance doivent presque toujours faire face à des situations exceptionnelles, non formalisées.

À ces difficultés conceptuelles s’ajoute le traitement de l’incertitude, due au fait que les algorithmes d’analyse d’image de bas niveau chargés de l’extraction des entités élémentaires produisent souvent des résultats imparfaits. Cette situation peut être critique lorsque la résolution de l’image est insuffisante ou lorsque l’image provient d’une saisie optique de mauvaise qualité due, par exemple, à l’état dégradé du document papier.

Cet article fait un bilan critique des possibilités et des limites de la reconnaissance de documents au stade actuel des recherches.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h7020


Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - WONG (K.Y.), CASEY (R.G.), WAHL (F.M.) -   Document Analysis System.  -  IBM J. Res. Develop., 26, no 6, 647-656 (1982).

  • (2) - INGOLD (R.) -   Lecture optique : une nouvelle approche.  -  Presses Polytechniques Fédérales, Lausanne (1990).

  • (3) - ANDRÉ (J.) -   Création de fontes en typographie numérique.  -  Documents d’habilitation, IRISA + IFSIC (1994).

  • (4) - TOMBRE (K.) -   Analysis of Drawings : State of the Art and Challenges.  -  Lecture Notes in Computer Science, Springer (1998).

  • (5) - OGIER (J.-M.), MULLOT (R.), LABICHE (J.), LECOURTIER (Y.) -   Multilevel approach and distributed consistency for technical map interpretation : Application to Cadastral Maps.  -  CVIU, 70, no 3, 438-451, mai 1998.

  • (6) - BELAÏD (A.), PIERRON (L.), NAJMAN (L.), REYREN (D.) -   La numérisation de documents :...

1 Sites Internet

Recherche privée et produits commerciaux

Serveur sur la reconnaissance de caractères et l’analyse de documents https://cfar.umd.edu/

HAUT DE PAGE

2 Organismes

Center of Excellence for Document Analysis and Recognition (CEDAR) http://www.cedar.buffalo.edu

Perception, Systèmes, Information (PSI) http://psiserver.insa-rouen.fr/psi

Reconnaissance de l’Écriture et Analyse de Documents (READ) http://www.loria.fr/equipes/read

Document, Image & Voice Analysis, université de Fribourg http://diuf.unifr.ch/diva

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Documents numériques Gestion de contenu

(76 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS