La fusion d’informations regroupe les techniques utilisées pour associer des informations variées sur un même problème. En traitement des images, la fusion d’informations se préoccupe de combiner au mieux des images d’origines différentes pour mieux connaître l’objet d’observation. La fusion est devenue un aspect important de traitement de l’information dans plusieurs domaines très différents, dans lesquels les informations à fusionner, les objectifs, les méthodes, et donc la terminologie, peuvent varier beaucoup, même si les analogies sont également nombreuses. L’ampleur que prend la fusion d’informations suit celle que prennent les technologies et le traitement de l’information en général.
Cet article vise à préciser le contexte et les concepts de la fusion dans le domaine du traitement du signal et des images (TDSI), à dégager des définitions et à présenter les grandes lignes des principales approches numériques. Nous ne présentons pas ici les approches à bases de règles, syntaxiques, logiques, ni les approches neuronales.
Le paragraphe 1 présente une définition générale, les caractéristiques des données à prendre en compte dans un système de fusion, ainsi que les principales étapes. Le paragraphe 2 est consacré de manière plus précise aux spécificités de la fusion en traitement des images, en soulignant ce qui la distingue de la fusion dans d’autres domaines. Les principales approches numériques sont ensuite exposées, dans les paragraphes 3 pour les approches probabilistes et bayésiennes, 4 pour la théorie des fonctions de croyance, et 5 pour les méthodes floues et possibilistes. Enfin dans le paragraphe 6, nous discutons du traitement de l’information spatiale en fusion d’images.