Points clés
Domaine : Techniques de communication sans fil
Degré de diffusion de la technologie : Emergence I Croissance I Maturité
Technologies impliquées : Semi-conducteurs, micro-nano électronique, opto-électronique
Domaines d’application : Communications sans fil, réseaux cellulaires, cœurs de réseaux
Principaux acteurs français (en lien avec les communications THz): Laboratoires de l’Université de Lille Nord Europe : Laboratoires IEMN, PhLAM, IRCICA, ST Microelectronics, CEA-LETI, Thalès (Liste non exhaustive (voir à la fin de l’article les laboratoires en lien avec le THz en général)
Pôles de compétitivité : Systematic Paris Région, Images et réseaux (Bretagne)
Industriels potentiels : Thalès R&T, ST Microelectronics, CEA-LETI, Infineon / IHP (Germany)
PMEs/Start-ups (Technologies THz en général) : MC2 Technologies, Lytid, Ti-Hive Technologies, Terakalis (France)
Autres acteurs dans le monde
Académiques :
Univ Stuttgart, Fraunhofer IAF Germany, Univ of Francfurt, Osaka School of Engineering, Brown School of Engineering, Univ Buffalo, Univ of Oulu (liste non exhaustive)
Entreprises :
VDI Inc (U.S.A.) Radiometer Physics (Germany), Rohde & Schwarz (Germany), ACST (Germany) (liste non exhaustive)
Contact : guillaume.ducournau@univ-lille.fr
Connecter ultra-rapidement les utilisateurs mobiles est l’un des grands défis du XXIe siècle. Les réseaux de données sans fil sont soumis à une pression énorme sur le volume de données à livrer aux citoyens, et les approches conventionnelles ne suffisent plus. Dans un monde devenu hyper-connecté, les informations numériques doivent transiter à une vitesse augmentant sans cesse, depuis les réseaux sociaux jusqu’aux téléchargements ultra-rapides.
La pression de la demande des utilisateurs nomades implique une croissance considérable de la connectivité, de la densité et du volume du trafic de données. Ainsi, on prévoit des densités de trafic de plusieurs Terabits par seconde/km². Ces nouveaux usages, comme le streaming vidéo en haute définition (4K), les jeux en ligne, la réalité augmentée, bientôt les véhicules autonomes, la chirurgie à distance en temps réel, requièrent l’acheminement de masses de données, et entraînent des débits de plus en plus importants de par l’instantanéité des usages.
Face à ce besoin en connectivité sans fil, il devient urgent d’anticiper de nouvelles approches. Les technologies basées sur les ondes « Térahertz », ou ondes « T » peuvent apporter des solutions. Depuis les débuts des radiocommunications, la capacité des liens de transmissions n’a cessé d’augmenter et, avec l’avènement des transmissions en mode paquet de tous types de données, les réseaux de transports sans fil ont dû s’adapter et monter en bande passante. Le spectre électromagnétique étant saturé sur la plupart des fréquences déjà allouées, de nouvelles ressources fréquentielles sont en train d’être explorées. Ces fréquences, usuellement au-delà de 100 GHz, et plus particulièrement la gamme 200-320 GHz ont un potentiel applicatif pour les transmissions sans fils à très haut débit. Depuis les premières démonstrations de communications sans fil térahertz en laboratoire, les technologies ont beaucoup évolué et sont aujourd’hui principalement basées sur des briques de base à la fois électronique et photoniques.
Cet article passe en revue les éléments principaux associés aux communications THz, en se focalisant d’une part sur ces ondes, quelques-unes de leurs spécificités, les fréquences potentielles pour les communications, ainsi que les aspects composants et systèmes pour les transmissions. Un tour d’horizon des systèmes déjà démontrés en laboratoire ou en situation opérationnelle sera présenté en donnant les tendances potentielles à venir.