Présentation

Article

1 - AIMANTATION SPONTANÉE À LA RESCOUSSE DE L'INDUCTION EN ÉLECTROTECHNIQUE

2 - MATÉRIAUX MAGNÉTIQUES POUR TRANSFORMATION D'ÉNERGIE BASSE FRÉQUENCE

3 - MATÉRIAUX À PERMÉABILITÉ ADAPTÉE À DES APPLICATIONS SPÉCIFIQUES

4 - STOCKAGE ET FILTRAGE D'ÉNERGIE AUX MOYENNES FRÉQUENCES

5 - PERFORMANCES MAGNÉTIQUES PEU SENSIBLES AUX PERTURBATIONS EXTÉRIEURES

6 - MATÉRIAUX À CYCLES D'HYSTÉRÉSIS RECTANGULAIRES

7 - PROPRIÉTÉS MAGNÉTIQUES EN ACCOMPAGNEMENT DES PROPRIÉTÉS PHYSIQUES, CHIMIQUES, MÉCANIQUES

8 - COÛT DES MATÉRIAUX MAGNÉTIQUES DOUX SEMI-FINIS

Article de référence | Réf : D2122 v1

Performances magnétiques peu sensibles aux perturbations extérieures
Matériaux magnétiques doux cristallins - Choix des matériaux

Auteur(s) : Thierry WAECKERLÉ

Relu et validé le 30 janv. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Dans nombre d'applications électrotechniques, la caractéristique essentielle est de convertir une puissance la plus élevée possible dans un volume souvent réduit, qu'il s'agisse d'un moteur de montre, d'un transformateur de distribution d'énergie ou d'un turboalternateur de centrale électrique. Tout designer, lorsqu'il faut choisir une solution de matériau satisfaisant au mieux une application électromagnétique, est face à un véritable compromis. Le choix implique la compréhension des phénomènes affectant les matériaux magnétiques doux. Cet article présente les exigences des différentes familles d'application avec les solutions actuelles de matériaux magnétiques doux, cristallins ou non, qui peuvent répondre aux besoins attendus.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

In a number of electro-technical applications, the essential feature is the conversion of the highest possible power in an often reduced volume, whether it is the workings of a watch, a power distribution transformer or a power plant turbine generator. Every designer, when faced with choosing a material solution that best satisfies the electromagnetic application, is faced with a real compromise. The choice involves the understanding of the phenomena affecting soft-magnetic materials. This article presents the requirements of the different families of application with the current soft-magnetic materials solutions, crystalline or not, that can respond to expected needs.

Auteur(s)

  • Thierry WAECKERLÉ : Ingénieur en métallurgie ENSEEG (INP Grenoble) - Docteur en Génie électrique - Expert métallurgie et matériaux magnétiques au sein du groupe ArcelorMittal - Responsable R des alliages magnétiques d'ArcelorMittal Stainless and Nickel Alloys au Centre de Recherche d'Imphy

INTRODUCTION

Les « matériaux magnétiques doux cristallins » font l'objet de quatre dossiers [D 2 121] [D 2 122], [D 2 123] et [D 2 124].

Le précédent dossier [D 2 121] a introduit les bases de magnétisme et de métallurgie appliquées aux matériaux métalliques ferromagnétiques cristallins, nécessaires à la compréhension des différents phénomènes affectant ces matériaux dans leurs applications électrotechniques.

Le présent dossier [D 2 122] entend mettre face à face les exigences de telle ou telle grande famille d'application avec les solutions actuelles de matériaux magnétiques doux (cristallins ou non) qui peuvent les satisfaire. Ce dossier est ainsi un exercice dans l'art du compromis que doit faire souvent tout « designer » lorsqu'il faut choisir une solution de matériau, satisfaisant au mieux l'application électromagnétique étudiée.

Les dossiers suivants [D 2 123] et [D 2 124] passent en revue les familles de matériaux doux cristallins.

Avant la lecture de ce présent dossier, il est préférable de connaître les notions et grandeurs rappelées dans le dossier [D 2 121].

Doit-on toujours rechercher un matériau travaillant à haute induction ?

Les moteurs, alternateurs, actionneurs électromagnétiques, composants magnétiques passifs, capteurs magnétiques ont tous en commun le besoin de disposer de champ magnétique suffisant (donc une énergie minimale) dans un espace réduit pour, soit transformer un signal (capteur, inductance), soit atténuer ce champ (filtrage, blindage), soit transformer l'énergie électrique en énergie mécanique – ou inversement – (moteur, alternateur, actionneur), soit encore transformer l'énergie électrique (transformateur).

Dans nombre d'applications, la caractéristique essentielle est de convertir une puissance la plus élevée possible dans un volume réduit, qu'il s'agisse d'un moteur de montre, d'un transformateur de distribution d'énergie ou d'un turboalternateur de centrale électrique. Pour échanger, transformer une énergie électromagnétique importante par unité de volume, il faut :

  • soit produire un flux magnétique important (f = BSS section de passage du flux, B induction magnétique) ;

  • soit produire des variations importantes de , ce qui revient à fonctionner à des fréquences de travail plus élevées ;

  • et finalement, dans nombre d'applications ces deux effets sont conjugués.

Aux basses fréquences telles que 50 ou 60 Hz, on se situe à proximité du 1er cas et dans tous les types de machines électromagnétiques, le flux f est créé, soit par des boucles de courant (bobinages), soit par des aimants. Qu'il s'agisse de transformer l'énergie électrique en mécanique ou inversement (moteur, alternateur, actionneurs...) ou de modifier l'énergie électromagnétique elle-même (transformateur, inducteurs, capteurs, blindage, filtre...) dans les systèmes, le flux magnétique est l'élément central de transformation de l'énergie ; de plus, sauf cas particuliers d'application (accouplement magnétique passif par exemple), l'utilisation de plus en plus fréquente d'aimants ne dispense pas de devoir transférer l'énergie par des conducteurs électriques (machines synchrones, relais polarisés, machines à courant continu, actionneurs à aimants...). Aussi, pour atteindre des valeurs importantes de flux magnétique f, on privilégie de loin une induction de travail B élevée avant d'envisager d'accroître la taille de la machine S.

On utilise en pratique au minimum 0,2 à 0,3 T d'induction de travail dans les applications basse à moyenne fréquence, ce qui correspond à la recherche de matériau magnétique pouvant s'aimanter jusqu'à au moins 0,4 T (polarisation àsaturation Js) comme les ferrites base MnZn (Js = 0,3 à 0,7 T) en électronique

de puissance ou les fer-nickel haute perméabilité (0,7 à 0,8 T minimum) qu'il s'agisse d'applications milli-électrotechnique (relais haute sensibilité, capteurs, moteurs horlogers...) ou moyenne-haute fréquence (dépôt de couches minces à épaisse pour les capteurs ou inductance intégrés au plus près du semi-conducteur). Mais ces niveaux d'induction restent faibles comme on le voit, et le transfert d'énergie est ici principalement amené par le fonctionnement en moyennes fréquences (à l'exception de la milli-électrotechnique) de ces composants (cas no 2).

Pour atteindre des flux magnétiques élevés à basse fréquence (considérant ici que la problématique de la diffusion magnétique est a priori réglée par un choix judicieux du matériau magnétique : voir par exemple [D 2 121]) il faut se rapprocher de matériau ferromagnétique, grand porteur de moments magnétiques (donc à aimantation à saturation Js élevée) tels que le fer, le cobalt et dans une moindre mesure le nickel, ainsi que leurs alliages (cristallins, nanocristallins ou amorphes). La recherche de Js élevée n'est souvent pas la seule exigence et le choix du matériau découle alors du compromis à faire, du type d'application envisagé.

Ainsi, la montée en fréquence dans une visée de densification de puissance fait passer le choix en matériau de ceux à Js élevé vers ceux à induction B de travail élevée à moyenne fréquence : les matériaux cristallins « massifs » sont alors progressivement moins pertinents et remplacés par des matériaux plus adaptés tels que les poudres compactées, les amorphes hypertrempés en bandes ultra-minces, les ferrites.

Mais lorsque la transformation d'énergie est secondaire comme lorsqu'il s'agit de fonctions de régulation de flux magnétique, de température, de transformation de signaux, de mesure de courant... alors le matériau utilisé peut devoir fonctionner à très basses inductions (par exemple à moins de Js/100 : domaine de Rayleigh) comme dans les transformateurs de modem, les blindages à très hautes performances, les récipients de cuisson par induction à température autostabilisée, les compteurs d'énergie, etc. Le niveau d'induction B de travail n'est donc pas nécessairement le 1er critère de choix : il est souvent conjugué à une recherche d'induction fréquentielle ou à d'autres grandeurs physiques de 1er plan ou encore être une grandeur de 2e plan, selon le domaine d'applications visé. Ce dossier s'articule autour de différents compromis de cahier des charges applicatifs, sur la base d'exemples fréquemment rencontrés.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d2122


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(276 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

5. Performances magnétiques peu sensibles aux perturbations extérieures

Les caractéristiques magnétiques des matériaux sont très généralement garanties par les producteurs dans des conditions optimales, aussi bien concernant l'état de la matière (relaxation de contraintes, recuit réducteur évitant toute oxydation, optimisation de la microstructure) que les conditions de mesure (20 à 25 oC, faible hygrométrie, matériau « jeune » n'ayant pu vieillir par diffusion de carbone à basse température, absence de contrainte). Pourtant, dans bien des cas, les performances magnétiques des matériaux sont sensiblement affectées, et rarement dans le bons sens, par :

  • la mise en œuvre thermomécanique (recuit, découpe, usinage, bleuissement) chez le consommateur électrotechnicien ou électronicien ;

  • les perturbations extérieures qui affectent l'application de façon prévisible : champ continu superposé, composantes harmoniques, perturbation électrique aléatoire de forte intensité, température élevée accidentelle, transport et mise en œuvre des matériaux sous forte hygrométrie (comme par exemple en Asie du Sud Est), contraintes de recuit, de découpe, de pliage, de surcharge en utilisation, de collage, de packaging, centrifuge...

Beaucoup de travaux, à défaut de solution – matériau, portent sur la « quantification » et la prévision de ces dégradations pour mieux les prendre en compte a priori (et en particulier dans les codes de calcul pour la simulation) dans le dimensionnement et l'optimisation au plus juste du dispositif. Cela pousse aussi à développer, lorsque la physique et la rentabilité économique le permettent, des alliages dérivés ayant comme propriété d'être beaucoup moins sensible à ces perturbations.

L'exemple le plus typique est le Supermimphy TLS (pour Low Stress ) dont la composition à 81%Ni + 6%Mo permet de conserver de hautes performances, tout en présentant une faible interaction, avec les contraintes mécaniques de mise en œuvre.

Une place à part doit être faite pour les matériaux qui ont la propriété de pouvoir coucher leur cycle d'hystérésis lorsque l'on induit de façon contrôlée une anisotropie transverse à la grande dimension du matériau (anisotropie induite par champ magnétique ou champ de déformation). En effet, cette situation rend linéaire la réponse du matériau quelles que...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(276 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Performances magnétiques peu sensibles aux perturbations extérieures
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHIKAZUMI (S.) -   Physics of ferromagnetism.  -  Clarendon Press, 2nd edition (2007).

  • (2) - CULLITY (B.) -   Introduction to magnetic materials.  -  Addison-Wisley (1972).

  • (3) - WOHLFARTH (E.) -   Ferromagnetic materials.  -  North-Holland (1980).

  • (4) - BOZORTH (R.) -   Ferromagnetism.  -  Van Nostrand (1951).

  • (5) - BERTOTTI (G.) -   Hysteresis in magnetism.  -  Academic Press (1998).

  • (6) - JILES (D.) -   Introduction to magnetism and magnetic materials.  -  Chapman et Hall, Londres (1991).

  • (7) - BRISSONNEAU (P.) -   Magnétisme et matériaux magnétiques.  -  ...

1 Sites Internet

Documentation technique sur amorphes magnétiques de Metglas Inc. http://www.metglas.com/products

Documentation technique sur FeSi à grains orientés de ThyssenKrupp Electrical Steel Gmbh http://www.tkes.com

Documentation technique sur FeSi à grains orientés de ArcelorMittal http://www.arcelormittalinoxbrasil.com.br

Documentation technique sur FeSi à grains non orientés de ArcelorMittal http://www.arcelormittal.com/fce/Products

HAUT DE PAGE

2 Brevets

Brevet WO 98/30728 – janv. 1997 – Allied Signal.

HAUT DE PAGE

3 Annuaire

HAUT DE PAGE

3.1 Fournisseurs

ArcelorMittal http://www.arcelormittal.com

Metglas http://www.metglas.com

Thyssen Krupp http://www.tks.com

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(276 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS