Connaître pour mieux utiliser, puis connaître pour influencer. Une bonne connaissance du comportement des matériaux permet de concevoir des structures mécaniques performantes en utilisant des matériaux convenables en quantité optimale. En mise en forme, la bonne connaissance des matériaux nécessite le développement de modèles mécaniques capables de rendre compte, le plus finement possible et à l'échelle pertinente, des phénomènes observés métallurgiquement et physiquement (texture cristallographique, anisotropie, élasticité, plasticité, écrouissage, endommagement, effet de la température). Ces modèles sont destinés à être implémentés dans des codes de calcul afin de simuler les procédés de mise en forme de pièces par grandes déformations non réversibles. De plus, une fois les pièces fabriquées, on souhaite garantir leurs performances et durée de vie sous chargements complexes.
Les procédés de mise en forme de pièces en matériaux métalliques ou composites ont considérablement évolué ces dernières années, renforçant ainsi leur utilisation dans les secteurs automobile, aéronautique, spatial, etc. Les critères de qualité, de fiabilité et de coût sont devenus prépondérants lors de la conception d'un produit.
Lors de la mise en forme de pièces massives ou minces, les matériaux sont soumis à de grandes déformations irréversibles avec contact frottement évolutif et des transferts thermiques entre pièces et outils. Ces déformations thermo-élasto-visco-plastiques génèrent souvent des micro-défauts surfaciques ou volumiques qui naissent et se développent dans la pièce. L'évolution de ces défauts conduit à la création de fissures macroscopiques détectables provoquant la mise au rebut de celle-ci avant son utilisation. Ils peuvent également générés des micro-fissures internes non facilement détectables, mettant ainsi en danger l'intégrité de la pièce ce qui peut être à l'origine de rupture en service. Il est donc important que le concepteur dispose d'un indicateur capable de prédire où et quand un endommagement significatif se développe lors de la mise en forme de la pièce. On peut ainsi soit repousser l'apparition de l'endommagement (hydroformage ou forgeage) ou au contraire favoriser sa naissance et sa propagation (découpage ou usinage).
Afin de concevoir la gamme optimale de fabrication et du fait des possibilités réduites d'expérimentation (coût matière important, nombre d'ébauches réduites...), la simulation numérique s'avère indispensable. Elle permet à l'ingénieur de prévoir virtuellement la possibilité d'apparition de zones endommagées dans la pièce au cours de la mise en forme, et d'agir sur les paramètres pertinents afin d'obtenir une pièce saine dans dommage.
Dans cet article, après une synthèse bibliographique portant sur l'état de l'art des procédés de mise en forme par hydroformage, une formulation élastoplastique endommageable est proposée pour décrire le comportement des matériaux lors de la simulation par éléments finis de l'hydroformage des pièces minces. Comme la qualité de la pièce finie dépend fortement de l'évolution géométrique et mécanique de la pièce, il y a besoin de réactualiser, en continu, la discrétisation auto-adaptative en fonction d'estimateur d'erreurs géométriques et ou physiques. Une technique de remaillage permettant de raffiner ou déraffiner le maillage de la pièce au cours de l'hydroformage est détaillée.
Les exemples présentés de l'hydroformage à chaud ou à froid des tubes et des plaques permettent d'illustrer la pertinence du couplage plasticité-endommagement et d'optimiser le procédé d'hydroformage.
Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles utilisés.