Présentation
En anglaisNOTE DE L'ÉDITEUR
Les normes ISO 180 de décembre 2000, ISO 180/A1 de décembre 2006 et ISO 180/A2 d'avril 2013 citées dans cet article ont été remplacées par la norme NF EN ISO 180 (T51-911) : Plastiques - Détermination de la résistance au choc Izod (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1912 (Janvier 2020).
La norme NF EN ISO 527-1 d'avril 2012 citée dans cet article a été remplacée par la norme NF EN ISO 527-1 (T51-034-1) : Plastiques - Détermination des propriétés en traction - Partie 1: Principes généraux (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1909 (Octobre 2019).
Les normes NF EN ISO 1183-1 de janvier 2013 et NF EN ISO 1183-2 d'août 2005 citées dans cet article ont été remplacées par les normes NF EN ISO 1183-1 et -2 (T51-037-1 et -2) : Plastiques - Méthodes de détermination de la masse volumique des plastiques non alvéolaires
- Partie 1 : méthode par immersion, méthode du pycnomètre en milieu liquide et méthode par titrage
- Partie 2 : méthode de la colonne à gradient de masse volumique (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1907 (Septembre 2019).
RÉSUMÉ
L’acide polylactique (PLA) est un polymère biodégradable synthétisé à partir de ressources renouvelables. Bien plus qu’un effet de mode, la production de PLA n’a cessé de croître depuis 2001, date de la première unité industrielle. Cet article compare cette évolution à celle des autres biopolymères et liste les propriétés et structures du PLA ayant permis l’implantation durable de ce matériau dans le marché actuel. Les procédés de synthèse ainsi que les particularités des procédés de transformation sont également détaillés. Finalement, les différentes options de fin de vie, telles que le compostage industriel, sont passées en revue.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Polylactic acid (PLA) is a bio-sourced large-scale commodity polymer produced from abundant 100%-renewable resources. PLA consumption has increased continuously since 2001 when the first industrial unit came on stream. This article compares this evolution with that of other biopolymers, and lists those properties and structures of PLA that have led to a durable implementation of this material in existing markets. Features of polymerization and transformation processes are also detailed. Lastly, PLA’s hydrolyzability also offers end-of-life options such as industrial composting, also reviewed.
Auteur(s)
-
Christian PENU : Ingénieur EEIGM (École Européenne d’Ingénieurs en Génie des Matériaux) - Docteur en procédés INPL (Institut National Polytechnique de Lorraine) - Business développement PLA et Biopolymères – Raffinage Chimie – Total, Feluy, Belgique
-
Marion HELOU : Docteur en chimie et catalyse des polymères (Université de Rennes) - R&D PLA et Biopolymères – Raffinage Chimie – Total, Feluy, Belgique
INTRODUCTION
L’acide polylactique (PLA) est un polymère 100 % biosourcé obtenu par transformation de l’acide lactique aujourd’hui produit à partir de la fermentation de sucres alimentaires issus de la production de maïs, de betterave, de tapioca ou encore de canne à sucre. Ce polymère est également biodégradable sous certaines conditions, notamment au sein d’un compost industriel.
Le PLA a connu son essor dans un contexte de raréfaction des ressources naturelles et d’une volonté d’optimisation du traitement des déchets. La dégradation du PLA génère à terme de l’acide lactique, qui est un produit naturel et assimilable par le corps humain, voire du dioxyde de carbone et de l’eau si assimilé par les micro-organismes. De ce fait, le PLA est utilisé principalement pour la fabrication d’emballage alimentaire et de la vaisselle jetable. En outre, cette utilisation est facilitée par la rigidité et l’aspect naturellement brillant et très transparent du PLA.
Le PLA présente cependant d’autres caractéristiques intéressantes permettant son utilisation dans de multiples champs d’applications. Ainsi, sa rigidité élevée permet une diminution d’épaisseur pour certains emballages et contribue à augmenter le module élastique des mélanges avec d’autres polymères. Le PLA est aussi très perméable à l’eau, ce qui est apprécié pour des applications telles que le textile sportif, diminuant ainsi l’effet moite dû à la sueur ou encore les films pour l’emballage des fruits et légumes frais.
La bonne stabilité dimensionnelle ainsi que le caractère « non toxique » du PLA en ont fait le principal matériau utilisé pour l’impression 3D par filament fondu. À noter que ces caractéristiques en font aussi un matériau de choix pour la fabrication d’implants ou prothèses biocompatibles et résorbables notamment sous la forme d’un copolymère avec l’acide glycolique permettant un contrôle de la vitesse de dégradation dans le corps humain.
Parmi les autres caractéristiques uniques du PLA, on peut citer une excellente réactivité chimique ou encore des propriétés bactériostatiques ainsi que piézoélectriques obtenues sous certaines conditions.
Ces propriétés intéressantes sont combinées à une faible vitesse de cristallisation associée à une température de transition vitreuse relativement basse (55-60 °C). Cela a pour effet de limiter l’usage du PLA pour certaines applications nécessitant de la résistance à la température. À noter cependant que des solutions existent telles que l’ajout d’additifs de nucléation ou la modification des procédés ou paramètres de transformation permettant la cristallisation du PLA.
Cet article permet d’avoir une vue d’ensemble du PLA, de sa synthèse et de ses structures, à ses propriétés. Il décrit également les différents procédés de transformation permettant d’obtenir des produits finis dans des applications relativement variées. Une partie importante est également dédiée aux différentes options de fin de vie du PLA ainsi qu’à sa place dans le marché des biopolymères dans le contexte actuel d’économies et d’optimisation des ressources naturelles.
Comme il est d’usage dans la profession, les compositions indiquées dans le texte sont, sauf précision contraire, massiques.
KEYWORDS
biobased polymer | biodegradable polymer | compost | biopolymer
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Matières thermoplastiques : monographies > Acide polylactique (PLA)
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux biosourcés > Acide polylactique (PLA)
Cet article fait partie de l’offre
Plastiques et composites
(396 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
Cet article fait partie de l’offre
Plastiques et composites
(396 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
BIBLIOGRAPHIE
-
(1) - E. B. &. N. Institute - « http://www.european-bioplastics.org » [En ligne] (décembre 2016).
-
(2) - Natureworks - « Innovation Takesroot Conference ». - Orlando (2016).
-
(3) - DOVE (A.P.) - « Organic catalysis for the Ring-Opening Polymerization ». - ACS Macro Letters, vol. 1, pp. 1409-1412 (2012).
-
(4) - WAYMOUTH (C), HEDRICK (J.L.) - « Organocatalysis : Opportunities and Challenges for Polymer Synthesis ». - Macromolecules, vol. 43, pp. 2093-2107 (2010).
-
(5) - HEDRICK (J.L.) - « New Paradigms for organic catalysts : the first organocatalytic living polymerization ». - Angew. Chem. Int. Ed, vol. 40, pp. 2712-2715 (2001).
-
(6) - TRIPATHI...
DANS NOS BASES DOCUMENTAIRES
Bioplastics magazine – Revue de référence dans le domaine des biopolymères
http://www.bioplasticsmagazine.com (page consultée le 27 février 2017)
HAUT DE PAGE
Conférence biannuelle organisée par Natureworks – Innovation takes root.
http://www.innovationtakesroot.com
Conférence biannuelle – PLA world congres.
http://www.bioplasticsmagazine.com/en/events/4plaworldcongress
Conférence annuelle – Biopolymer conference
http://biopolymers.conferenceseries.com
...Cet article fait partie de l’offre
Plastiques et composites
(396 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive