L’acide polylactique (PLA) est un polymère 100 % biosourcé obtenu par transformation de l’acide lactique aujourd’hui produit à partir de la fermentation de sucres alimentaires issus de la production de maïs, de betterave, de tapioca ou encore de canne à sucre. Ce polymère est également biodégradable sous certaines conditions, notamment au sein d’un compost industriel.
Le PLA a connu son essor dans un contexte de raréfaction des ressources naturelles et d’une volonté d’optimisation du traitement des déchets. La dégradation du PLA génère à terme de l’acide lactique, qui est un produit naturel et assimilable par le corps humain, voire du dioxyde de carbone et de l’eau si assimilé par les micro-organismes. De ce fait, le PLA est utilisé principalement pour la fabrication d’emballage alimentaire et de la vaisselle jetable. En outre, cette utilisation est facilitée par la rigidité et l’aspect naturellement brillant et très transparent du PLA.
Le PLA présente cependant d’autres caractéristiques intéressantes permettant son utilisation dans de multiples champs d’applications. Ainsi, sa rigidité élevée permet une diminution d’épaisseur pour certains emballages et contribue à augmenter le module élastique des mélanges avec d’autres polymères. Le PLA est aussi très perméable à l’eau, ce qui est apprécié pour des applications telles que le textile sportif, diminuant ainsi l’effet moite dû à la sueur ou encore les films pour l’emballage des fruits et légumes frais.
La bonne stabilité dimensionnelle ainsi que le caractère « non toxique » du PLA en ont fait le principal matériau utilisé pour l’impression 3D par filament fondu. À noter que ces caractéristiques en font aussi un matériau de choix pour la fabrication d’implants ou prothèses biocompatibles et résorbables notamment sous la forme d’un copolymère avec l’acide glycolique permettant un contrôle de la vitesse de dégradation dans le corps humain.
Parmi les autres caractéristiques uniques du PLA, on peut citer une excellente réactivité chimique ou encore des propriétés bactériostatiques ainsi que piézoélectriques obtenues sous certaines conditions.
Ces propriétés intéressantes sont combinées à une faible vitesse de cristallisation associée à une température de transition vitreuse relativement basse (55-60 °C). Cela a pour effet de limiter l’usage du PLA pour certaines applications nécessitant de la résistance à la température. À noter cependant que des solutions existent telles que l’ajout d’additifs de nucléation ou la modification des procédés ou paramètres de transformation permettant la cristallisation du PLA.
Cet article permet d’avoir une vue d’ensemble du PLA, de sa synthèse et de ses structures, à ses propriétés. Il décrit également les différents procédés de transformation permettant d’obtenir des produits finis dans des applications relativement variées. Une partie importante est également dédiée aux différentes options de fin de vie du PLA ainsi qu’à sa place dans le marché des biopolymères dans le contexte actuel d’économies et d’optimisation des ressources naturelles.
Comme il est d’usage dans la profession, les compositions indiquées dans le texte sont, sauf précision contraire, massiques.