Présentation

Article

1 - THÉORIE. RAPPELS

2 - PRINCIPE DE MESURE

3 - ÉTALONNAGE ET UNITÉS DE TURBIDITÉ

  • 3.1 - Principe de l'étalonnage
  • 3.2 - Unités utilisant la formazine
  • 3.3 - Autres unités

4 - TECHNIQUES OPTIQUES DE MESURE

5 - AUTRE TECHNIQUE DE MESURE

6 - RÉGLEMENTATION ET NORMES

7 - DOMAINES D'APPLICATION

8 - DESCRIPTION D'ANALYSEURS

9 - SPÉCIFICATION D'UN TURBIDIMÈTRE

Article de référence | Réf : R2355 v1

Théorie. Rappels
Mesure de turbidité

Auteur(s) : Claude PELLETIER

Date de publication : 10 mars 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Claude PELLETIER : Ingénieur de l'École supérieure d'ingénieurs en génie électrique (ESIGELEC-Charliat) - Directeur technique EXERA (Association des exploitants d'équipements de mesure, de régulation et d'automatismes)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La turbidimétrie fait partie de la photométrie industrielle, elle représente l’un des principaux paramètres de détermination de la qualité de l’eau de boisson/potable. En effet, la clarté et la transparence de l’eau sont l’image d’une haute qualité de l’eau pour la plupart des personnes.

Les applications des turbidimètres sont très diverses et nous les rencontrons dans :

  • le traitement des eaux potables pour contrôler le bon fonctionnement des équipements de sédimentation, floculation, décantation, filtration ;

  • le traitement des eaux résiduaires ;

  • la recherche microbiologique ;

  • l’industrie alimentaire :

    • boissons, soupes,

    • laiterie,

    • fromagerie, etc. ;

  • l’analyse des sulfates ;

  • les traitements de surface ;

  • les installations thermiques pour le contrôle de la qualité des eaux :

    • contrôle de la silice colloïdale pour la protection des chaudières et des turbines,

    • des particules de fer entraînées dans la production de vapeur provenant de sites géothermiques ;

  • l’industrie de la pâte à papier ;

  • l’industrie des semi-conducteurs ;

  • l’industrie textile ;

  • l’industrie chimique, pétrochimique ;

  • diverses autres industries.

La turbidité du fluide peut être modifiée suite à des évolutions de ses propriétés physiques, microbiologiques, chimiques et radiologiques. Ces évolutions peuvent avoir des effets importants sur la qualité microbiologique de l'eau potable suite à la présence de bactéries et de virus. La croissance microbienne dans l'eau est particulièrement marquée à la surface des particules et à l'intérieur des flocs à faible cohérence. Il existe une coïncidence entre l’existence de germes pathogènes et les matières en suspension.

Une turbidité excessive altère l'aspect de l'eau traitée et peut nuire au processus de désinfection ainsi qu'au maintien d'une concentration de chlore résiduel suffisante dans le réseau de distribution.

La mesure de turbidité peut être utilisée comme substitut d’autres paramètres et à titre d’exemples, nous pouvons citer :

  • la détection des bactéries et des virus ;

  • l’arsenic dans l’eau naturelle dont la turbidité donne une image de la teneur ;

  • l’eau de traitement de surface, dont la mesure de pH (neutralisation) est suivie par la mesure de la turbidité.

Ces analyseurs sont destinés à être installés sur des sites en exploitation pour contrôler de façon continue les eaux :

  • de procédés (pétrochimique, chimique, etc.) ;

  • de rejets ;

  • de surface ;

  • pluviales ;

  • de nappes.

Ces eaux peuvent être :

  • à surface libre ou en canalisation ;

  • courantes ou dormantes ;

  • à niveau fixe ou variable ;

  • en écoulement gravitaire ou sous pression.

Les matières contenues dans l’eau se présentent soit sous une forme dissoute, soit sous la forme de particules en suspension, et ce sont ces dernières qui font appel à la mesure de la turbidité de l’eau traitée dans cet article.

La turbidité est donc l’un des paramètres permettant de caractériser la qualité de l’eau en entrée, lors de traitements internes et en sortie d’usines.

En ce qui concerne la mesure de la turbidité en traitement d’eau potable, elle est destinée à estimer la charge en entrée pour adapter les traitements, et en sortie pour vérifier les filières et contrôler l’eau produite. Cette mesure est également effectuée sur les unités d’épuration physico-chimiques de rejets industriels.

La turbidité de l'eau est affectée par la présence de diverses matières en suspension telles que limon, argile, matières organiques et inorganiques (oxydes et hydroxydes métalliques) en fines particules, composés organiques colorés solubles, plancton et autres micro-organismes.

Elle est définie comme étant la « réduction de la transparence d'un liquide due à la présence de matières non dissoutes » (définition donnée dans la norme NF EN ISO 7027 de mars 2000 au § 3.1).

Elle correspond à la propriété de l’échantillon de diffuser et d’absorber la lumière incidente, contrairement à l’eau pure qui la transmet intégralement.

Le résultat de la mesure dépend beaucoup de la technique de mesure utilisée. L'intensité totale et la distribution angulaire de la lumière diffusée par de l'eau trouble sont le résultat des effets cumulés par des interactions avec une ou plusieurs particules (diffusion multiple), et sont liées par un ensemble de relations complexes à des facteurs comme la quantité de matières non dissoutes, leur taille, leur forme et leur indice de réfraction ainsi que la longueur d'onde de la lumière incidente.

Le principe de mesure à envisager dépend de l’application à laquelle correspond un niveau de turbidité du fluide comme mentionné dans le tableau 1.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r2355


Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Théorie. Rappels

1.1 Interaction entre un faisceau lumineux et une particule

La mesure de turbidité d’un liquide utilise le principe de l’interaction entre une onde lumineuse incidente et une particule en suspension engendrant principalement des phénomènes de diffusion, réflexion, absorption, réfraction..., comme illustré par la figure 1.

Cette particule selon sa taille, sa nature, sa forme, de son indice de réfraction de la longueur d’onde du faisceau lumineux ainsi que son intensité, provoque une dispersion de la lumière incidente dans toutes les directions. En quelque sorte elle devient une source de lumière.

La lumière diffusée à 90° a plus particulièrement été étudiée par le physicien anglais Sir John Tyndall en 1869. Il a observé que les particules étaient invisibles dans l’axe d’un faisceau lumineux, mais qu’elles étaient discernables sur le côté du faisceau et plus particulièrement à 90°. Il a démontré que l’intensité de la lumière diffusée est directement proportionnelle au nombre de particules en suspension.

HAUT DE PAGE

1.2 Distribution spatiale de la lumière par une particule

La diffusion moléculaire de la lumière a été étudiée successivement par Brucke en 1852 (théorie de la diffusion du rayonnement solaire), puis par John Tyndall en 1869 qui poursuit la théorie de Brucke en effectuant des expériences et Lord Rayleigh dont les études sont le point de départ des recherches sur les actions chimiques produites par la lumière des gaz. La théorie de la diffusion spatiale de la lumière non polarisée par une particule (homogène, sphérique...) avec un diamètre et un indice de réfraction arbitraires a été développée par le physicien allemand Gustav Mie (1868-1957). Sa théorie est appelée théorie de Lorenz-Mie, relative à la diffraction de la lumière par des particules sphériques plus grosses que la longueur d’onde. Elle tire son nom du physicien danois Ludvig Lorenz et du physicien allemand Gustav Mie, qui lui donna sa première forme en 1908. Quant à la diffusion étudiée par Lord Rayleigh, elle concerne la diffusion de très petites particules, telles que des molécules, de dimensions inférieures...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Théorie. Rappels
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Guide de choix des turbidimètres en continu  -  EXERA S 3796 X 03.

  • (2) -   Recueil international des méthodes d'analyse  -  OIV-MA-F-SA2-08 – Turbid (Organisation internationale de la vigne et du vin).

  • (3) -   Determination of turbidity by nephelometry  -  Environmental Protection Agency, méthode 180-1.

  • (4) - BOEGLIN (J.-C.) -   Contrôle des eaux douces et de consommation humaine  -  [P 4 210], Techniques d'analyse (2000).

  • (5) - GODART (H.) -   Eaux de distribution. Objet des traitements  -  [C 5 198], Technologies de l'eau (2000).

  • (6) - GILLES (P.) -   Lutte contre la pollution des eaux. Finitions à haute performance  -  [G 1 330] , Technologies de l'eau (1999).

  • ...

1 Glossaire

  • Turbidité : c'est la réduction de la transparence d'un liquide due à la présence de matières non dissoutes (norme NF EN ISO 7027).

Les définitions ci-dessous sont extraites de la norme FD ISO GUIDE 30.

  • Matériau de référence (MR) : matériau ou substance dont une ou plusieurs valeurs des propriétés sont suffisamment homogènes et bien définies pour permettre de l'utiliser pour l'étalonnage d'un appareil, l'évaluation d'une méthode de mesurage ou l'attribution de valeurs aux matériaux.

  • Matériau...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures physiques

(119 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS