Ce travail est né du besoin de mettre à disposition des ingénieurs et techniciens toute une panoplie de méthodes actuelles de filtrage. Il vise également à démystifier les aspects considérés comme abscons en fournissant des clés pour une bonne pratique des opérations de filtrage.
En 1988, le défunt Jacques Max, adjoint scientifique au Commissariat à l’énergie Atomique de Grenoble, a proposé aux « Techniques de l’Ingénieur » une contribution très intéressante sur la pratique du filtrage numérique : notre article se situe dans une volonté de compléter et étendre la pratique du filtrage aux récents développements du filtrage linéaire numérique à une et à deux dimensions.
Mais qu’est-ce que le filtrage ?
Le filtrage est une opération qui consiste à transformer l’information (contenue dans un signal) en entrée d’un système matériel ou logiciel en une information de sortie différente de l’information d’origine, mais plus utile pour l’expérimentateur.
Dans le cas d’un signal à une ou à deux dimensions, cette transformation peut se matérialiser, par exemple, soit par une sélection ou une élimination de certaines fréquences, soit par une réduction voire même une suppression d’informations indésirables. Dans cette optique, il est possible de citer l’exemple de la lumière blanche qui se transforme en lumière bleue, ou bien celui d’un e-mail ou un site web bloqué ou « filtré » par un dispositif électronique ou par un code informatique agissant selon certains critères. L’extraction ou l’estimation d’informations pertinentes et de caractéristiques utiles peut être considérée également comme un filtrage.
Après un rappel des concepts fondamentaux de la numérisation d’un signal, et d’utilisation d’outils d’analyse spécifiques aux systèmes numériques, les méthodes de synthèse de filtres linéaires numériques du type FIR (filtre à réponse impulsionnelle finie) et du type IIR (filtre à réponse impulsionnelle infinie) seront présentées sous un angle simplifié et implémentées sous MATLAB. Les avantages et limitations de ces deux types de filtres seront également analysés. Deux applications qui permettent d’illustrer l’utilisation de ces filtres dans le monde réel sont proposées : l’une sur le réchauffement climatique et l’autre dans le domaine de l’audio.
Par la suite, notre attention se focalisera sur le filtrage optimal, notamment récursif, dont l’importance pratique est vitale, par exemple dans le domaine du Radar et du suivi de cible en présence de fortes perturbations, ou encore dans le domaine biomédical.
L’extension du filtrage linéaire aux images numériques est illustrée en lissage, accentuation, débruitage et détection de contours.
Tout au long de cet article, il est mis à la disposition du lecteur de nombreux exemples et exercices d’applications pour illustrer les résultats obtenus : les exemples ont toujours un but pédagogique ou une approche du concret en vue de réaliser un filtre « sur mesure ». Des codes MATLAB sont proposés pour permettre à l’expérimentateur de mettre en œuvre concrètement la pratique du filtrage.