La transformée de Fourier, ou plus généralement l’analyse fréquentielle ou spectrale, est un outil fondamental pour la compréhension et la mise en œuvre de nombreuses techniques numériques de traitement des signaux et des images. On la trouve dans des applications directes comme l’analyse harmonique des vibrations et des signaux musicaux, mais aussi dans des domaines très variés. On peut citer toutes les applications où il est nécessaire de mettre en forme les signaux mesurés par des capteurs grâce à un filtrage. On l’utilise dans le codage à débit réduit de la musique et de la parole, la reconnaissance vocale, l’amélioration de la qualité des images, leur compression, les transmissions numériques, les nouveaux systèmes de radiodiffusion et de télédiffusion, dans les applications biomédicales (scanner, imagerie par résonance magnétique nucléaire), en astronomie (synthèse d’image par interférométrie), en modélisation de propagation d’ondes, en analyse spectrale pour l’étude de structures moléculaires ainsi qu’en cristallographie. Son extension (calculs sur les corps finis) est utilisée dans les méthodes de correction d’erreurs en transmission numérique. Elle intervient aussi dans les méthodes envisagées en informatique quantique pour la factorisation de nombres.
L’objectif de cet exposé est de donner au lecteur les connaissances aussi bien théoriques que pratiques lui permettant de mettre en application les outils d’analyse fréquentielle et de proposer un aperçu de la manière dont ils sont utilisés dans différents domaines. Elle n’a pas de prétention à la rigueur mathématique et insiste plus sur les aspects opérationnels.
Cette présentation a été découpée en trois parties.
La première partie (ce dossier [AF 1 440]) donne les résultats fondamentaux sur la transformée des signaux monodimensionnels fonctions continues puis échantillonnées du temps, plus particulièrement son utilisation en filtrage numérique.
Nous commençons par le cas le plus simple, l’analyse des fonctions périodiques par séries de Fourier, puis continuons par l’analyse des fonctions continues du temps en mentionnant la théorie des distributions. Nous y verrons les propriétés principales, comme la transformée d’une convolution. Ensuite, nous verrons comment la transformée de Fourier permet de traiter les problèmes posés par l’échantillonnage et la formulation du filtrage numérique.
Dans la deuxième partie , nous verrons les expressions de la transformée de Fourier dans le cas des traitements numériques, en décrivant plus particulièrement l’algorithme de transformée de Fourier rapide. Nous donnerons les résultats principaux concernant l’analyse spectrale des signaux aléatoires, puis ensuite aborderons le cas des signaux bidimensionnels et des images.
La troisième partie commence par l’étude du filtrage et l’analyse spectrale des signaux bidimensionnels et se termine par l’exposé de quelques traitements de signaux multidimensionnels faisant intervenir la transformée de Fourier, comme l’imagerie médicale.