Cette deuxième partie de la présentation de la transformée de Fourier comporte deux paragraphes distincts et sans rapport direct. Elle se base sur les développements donnés dans la première partie en La transformée de Fourier et ses applications (partie 1).
Nous verrons dans le premier paragraphe les expressions de la transformée de Fourier dans le cas du traitement numérique des signaux échantillonnés (la transformée de Fourier discrète), en décrivant plus particulièrement l’algorithme de transformée de Fourier rapide et en notant quelques considérations pratiques qu’on ne doit pas négliger lors de la mise en œuvre et l’utilisation de la transformée de Fourier discrète. Nous y mentionnerons des applications importantes comme la compression MP3 des signaux musicaux ou la modulation OFDM utilisée, par exemple, en télédiffusion numérique. Nous y donnerons également les résultats principaux concernant l’analyse spectrale des signaux aléatoires, principalement les notions de fonction d’autocorrélation et de densité spectrale.
Dans un deuxième paragraphe, nous aborderons le cas des signaux bidimensionnels (le plus souvent des images) et leur représentation en fréquences qui serviront de base dans différents domaines d’application : compression d’images, filtrage d’images, prétraitements pour la reconnaissance de formes, en mentionnant plus particulièrement les propriétés importantes de la transformée de Radon très utilisée en imagerie médicale.
La mise en œuvre et des exemples d’application seront vus dans une troisième partie La transformée de Fourier et ses applications (partie 3).