Dans le contexte numérique actuel, caractérisé par une surabondance d'informations, que l'on appelle infobésité ou déluge informationnel, il apparaît que les capacités humaines ne permettent pas l'analyse exhaustive de l'offre d'un corpus au sein d'une plateforme. Même dans le cadre de l'utilisation d'un moteur de recherche intégré, les résultats pertinents sont généralement noyés dans un « bruit » informationnel, ce qui en empêche, ou tout du moins en ralentit, le repérage. Pour aider l'esprit humain dans son processus de sélection, des systèmes de recommandation grand public ont vu le jour dans la dernière décennie du vingtième siècle.
Un système de recommandation est un outil de filtrage de l'information offrant à un usager l'assistance à la sélection personnalisée face à un catalogue d'items. Les cadres d'application de ces systèmes sont multiples : au sein des réseaux socionumériques, du marketing digital avec la relation client pour la vente en ligne ou encore des services personnalisés liés à une offre culturelle.
Après un tour d'horizon des domaines d'application des moteurs de recommandation, les principales stratégies de recommandations sont présentées sur les plans théoriques et algorithmiques. La personnalisation de ces systèmes peut se baser sur plusieurs méthodes algorithmiques, principalement orientées autour des aspects sociaux et/ou sur les caractéristiques des objets manipulés. Cet article propose également une mise en lumière de l'approche collaborative au travers d'un exemple reposant sur des outils open source.
Avec un recul de plus de 20 ans sur ces dispositifs, des questionnements émergent autour de l'éthique, du respect de la vie privée et de la confiance de l'usager. Des réflexions sont ainsi menées pour une normalisation et un encadrement légal du phénomène de recommandation.