Vous disposez d’un élément à mesurer/analyser : cet élément peut être une cale étalon, une solution étalon, un matériau de référence, une source étalon d’un radionucléide… ou un échantillon inconnu (prélevé au sein d’un lot, d’une série, d’une production…).
Vous vous intéressez à une propriété mesurable de cet élément. Cette propriété d’intérêt pourrait être « définie à un niveau de détail suffisant pour être raisonnablement représentée par une valeur vraie par essence unique » (guide ISO/CEI 98-4 : 2013).
Avant de réaliser la mesure de cette propriété d’intérêt, vous avez déjà une connaissance « a priori » de la valeur de mesure attendue, soit par des mesures antérieures de ce même mesurande (un étalon mesuré périodiquement…), soit par des mesures antérieures d’éléments similaires (lots antérieurs réalisés dans les mêmes conditions de production avec un processus sous contrôle…), soit par des résultats de codes de calculs ou de simulation numérique…
Cette fiche présente simplement comment l’approche bayésienne permet de prendre en compte cette connaissance « a priori » lors de l’estimation de la valeur vraie du mesurande et de l’incertitude associée à cette estimation. Elle montre également l’intérêt de la prise en compte de ces informations « a priori » et les limites de cet exercice.
Étapes :
Vérifiez la cohérence/compatibilité des lois de distribution « a priori » et des mesures… Certaines séries peuvent en effet être incohérentes, incompatibles, et doivent nous conduire à remettre en cause soit le prior, soit la mesure.
N’opposez pas les approches fréquentiste et bayésienne Les deux approches sont indissociables, comme les deux faces d’une même pièce ! Ne cherchez pas du bayésien partout Après les premiers succès, voir du bayésien partout ou vouloir tout faire en bayésien serait une erreur. L’approche bayésie...