Pe but de cet article est de familiariser le lecteur avec les différentes techniques de mesure et de caractérisation des matériaux composites manufacturés (à permittivité et perméabilité données positives ou négatives) ou structuraux (utilisation de cellules élémentaires en réseau périodique 2D ou 3D, développés dans l'article [E1165]), constituant, entre autres, les milieux absorbants mais pouvant servir aux radômes et aussi aux matériaux pour des antennes.
De nombreuses méthodes existent, qui seront rappelées au début de cet article. Forts de notre expérience, nous avons retenu les méthodes en espace libre auxquelles sera consacrée la plus grande partie de ce dossier.
En effet, les méthodes en espace libre sont souvent préférées aux techniques coaxiales, de cavité, d'interférométrie à un cornet ou de sondes à terminaison coaxiale ouverte pour les raisons qui suivent.
-
Les céramiques, les composites et les structures à métamatériaux sont des matériaux inhomogènes par suite même de leur procédé de fabrication. En guide d'onde, en coaxial, en cavité, des modes d'ordre supérieur au mode fondamental sont excités et on doit les prendre en compte dans le calcul.
-
Par suite de leur hétérogénéité intrinsèque, de petits échantillons de matériau composite ne sont pas représentatifs du matériau entier. Il peut y avoir des dispersions importantes changeant complètement les propriétés de réflexion et de transmission ainsi que les propriétés intrinsèques des milieux.
-
Les méthodes en espace libre sont non destructives et sans contact. Elles sont parfaitement adaptées aux mesures sous incidence variable et pour des mesures en température relativement élevée.
-
Les méthodes en espace libre demandent peu de préparation des échantillons, ce qui n'est pas le cas des méthodes guidées ou des techniques de cavité.
-
Avec les techniques en espace libre, des caractérisations large bande avec une grande plage d'angle d'incidence, des polarisations diverses et des conditions de température sont possibles sur des matériaux isotropes, anisotropes ou des milieux bi-anisotropes.
Les matériaux composites en électromagnétisme font l'objet de plusieurs articles :
[E1164] Introduction ;
[E1165] Modélisation des composites, du matériau électronique et des métamatériaux ;
[E1166] Matériaux absorbants radar ;
Matériaux composites en électromagnétisme- Caractérisation[E1167] Caractérisation des matériaux composites.
Les sujets ne sont pas indépendants les uns des autres. Le lecteur devra assez souvent se reporter aux autres fascicules [E1165] et [E1166].