Les moteurs thermiques, alternatifs ou à flux continu (turboréacteurs et turbines de centrales électrogènes par exemple) ou les machines de réfrigération-congélation et les pompes à chaleur sont autant de convertisseurs d’énergie dont il est important de connaître les principes scientifiques sur lesquels ils sont basés si on veut maîtriser leur conception et leur mise en œuvre. C’est l’exposé de ces principes et de leurs applications qui fait l’objet de cet article.
Comme ces principes scientifiques font partie du domaine de la thermodynamique, la première partie de l’article est consacré à la présentation des premier et deuxième principes de cette science. Il convient cependant de noter que celle-ci est nettement orientée vers les applications techniques avec notamment les notions de bilans enthalpiques et entropiques.
Dans la deuxième partie, on met en application le principe du transfert de l’énergie, et de l’extensité correspondante, de la haute tension vers la basse tension, ainsi que celui de la conservation des extensités, pour définir les convertisseurs d’énergie et montrer la nécessité de leur fonctionnement entre au moins quatre réservoirs d’énergie, deux pour chacun des deux types d’énergie mis en œuvre dans le convertisseur. Vu cette symétrie de réservoirs, ces convertisseurs, qui comporte tous une partie motrice et une partie génératrice, peuvent avoir théoriquement un fonctionnement inversé. Cependant, la chaleur différant des autres types d’énergie par le fait que sa variable extensive, l’entropie, n’est pas conservative, on constate l’existence de générateurs thermiques monothermes dont le fonctionnement ne peut pas être inversé. Cette présentation générale des convertisseurs est suivie par la définition et l’examen du fonctionnement théorique des convertisseurs de Carnot qui ont une efficacité optimale et qui servent toujours de repère pour les convertisseurs réels.
Cette recherche de l’optimum, en adéquation avec la recherche permanente des économies de certains types d’énergie, peut se faire par des analyses entropiques du fonctionnement des systèmes énergétiques. Cependant, les analyses exergétiques apparaissent comme plus pratiques lors des applications techniques. C’est la raison pour laquelle cet article met, in fine, l’accent sur la définition de l’exergie et de son complément, l’anergie, ainsi que sur leurs transferts et leurs bilans.