La volonté de miniaturiser les actionneurs ne date pas d’hier et les progrès accomplis en ce domaine, par l’industrie horlogère notamment, le prouvent. Mais alors que les méthodes classiques d’usinage ont atteint leurs limites, de nouvelles techniques de fabrication, issues pour la plupart des procédés utilisés en micro-électronique, permettent maintenant de réaliser des pièces méca-niques à l’échelle micrométrique. Les premiers micromoteurs usinés sur silicium apparaissent à la fin des années 1980. Dans des domaines d’application où les dimensions jouent un rôle très important, comme par exemple le génie médical et biologique, l’espace et l’instrumentation, l’enjeu est considérable.
À l’image des moteurs « classiques », c’est-à-dire de taille macroscopique, plusieurs principes de fonctionnement peuvent être mis en évidence. Cependant, nous nous restreindrons dans cet article à l’étude des micromoteurs électrostatiques à capacité variable. Après avoir présenté quelques procédés de fabrication et réalisations, nous étudierons les effets de la miniaturisation sur les performances statiques et dynamiques des convertisseurs électromécaniques. L’intérêt des systèmes électrostatiques étant mis en évidence dans les très petites dimensions, nous aborderons les principes de fonctionnement et présenterons ensuite une méthode systématique de dimensionnement qui, sur la base de règles topologiques simples et d’un cahier des charges donné, permet de définir une structure optimale en terme de couple moyen maximal. Enfin, pour mieux apprécier les performances théoriques de ce type de micromoteur, nous étudierons son comportement dynamique et présenterons des résultats de simulation correspondant à plusieurs configurations de fonctionnement.