Le moteur asynchrone, dit parfois d’induction, est utilisé depuis de très nombreuses années pour assurer la variation de vitesse non seulement de processus industriels, mais aussi de chaînes de traction pour les transports (ferroviaires et véhicules électriques), également de systèmes domotiques... Pour des applications de faible puissance et pour des domaines restreints de variation de vitesse, on peut agir sur cette dernière par variation de l’amplitude de la tension statorique à l’aide de gradateurs. La récupération rotorique permet la variation de vitesse pour des machines de grande puissance (machine asynchrone associée à des éoliennes), sur des plages réduites de vitesse. Actuellement, la majorité des variateurs de vitesse utilise des alimentations à fréquence et amplitude variables sur le stator de la machine asynchrone. Le domaine de vitesse est beaucoup plus étendu et les performances dynamiques plus élevées. La machine asynchrone présente l’avantage d’être robuste, de construction simple et peu coûteuse, surtout si le rotor est à cage d’écureuil. Cependant, son contrôle est plus complexe que celui de la machine à courant continu ou de la machine synchrone. Dans la mesure où l’alimentation a lieu par une seule armature, le découplage entre les deux variables principales de cette machine, à savoir le flux magnétique et le couple électromagnétique, est difficile à réaliser (voir l’article suivant [D 3 621] sur la commande des machines asynchrones).
Après une brève présentation des variateurs asynchrones à fréquence statorique constante (gradateur et cascade hyposynchrone), on considère l’étude des comportements en régime statique et dynamique de la machine asynchrone, alimentée à fréquence variable, selon plusieurs préoccupations :
-
en régime statique, on étudie successivement les formes d’onde des signaux électriques et mécaniques (courants, tensions et couple) pour différents modes d’alimentation, les caractéristiques électromécaniques en régime permanent sinusoïdal à amplitude et fréquence variables pour différents choix de fonctionnements et de variables d’entrée ;
-
en régime dynamique, on s’intéresse à une modélisation autour d’un point de fonctionnement en raison de la non-linéarité des modèles. On s’intéresse au positionnement des pôles et des zéros en vue de définir les conditions de stabilité et de réponse non minimale de phase.