Contrairement aux systèmes naturels qui obéissent aux lois de la physique, les « Systèmes à événements discrets » (SED) sont des systèmes généralement de création humaine dont le comportement ne peut être décrit par des fonctions continues. Ils sont caractérisés par une dynamique discrète qui évolue dans un ensemble dénombrable fini.
Dans cette classe de systèmes, on retrouve, par exemple :
-
les systèmes manufacturiers, pour lesquels on étudie les flux de matières ;
-
les systèmes de transport ;
-
les systèmes informatiques.
Pour l’étude de ces systèmes, il est nécessaire de disposer de modèles aptes à prendre en compte toutes leurs caractéristiques dynamiques souvent de natures complexes. Or, les phénomènes mis en jeu par les SED et responsables de leur comportement, sont nombreux et de natures diverses : tâches séquentielles ou simultanées, temporisées ou non, synchronisées ou concurrentes. De cette diversité de phénomènes provient l’incapacité de décrire l’ensemble des SED par un modèle unique qui soit à la fois fidèle à la réalité et exploitable mathématiquement.
Plusieurs concepts de modélisation ont été élaborés : par exemple, les chaînes de Markov pour la commande des processus stochastiques , ou les réseaux de Petri déterministes pour l’optimisation de ressources ( ).
Certaines sous-classes de SED, mettant uniquement en jeu des phénomènes de synchronisation et de délai, peuvent être modélisées par une catégorie de réseaux de Petri particuliers, appelés « Graphes d’événements temporisés » (GET). Il a été montré que ces derniers admettent une représentation linéaire dans une structure algébrique particulière, appelée « algèbre des dioïdes » .
L’étude des SED dans l’algèbre des dioïdes, consiste à modéliser le système étudié en premier lieu par un réseau de Petri, puis à établir les équations récurrentes modélisant leur comportement dynamique dans l’algèbre des dioïdes.
Notons que cette dernière offre, dans certains cas, une alternative à l’algèbre usuelle dans laquelle certains problèmes n’y admettent pas de solution.
Dans cet article, après avoir introduit les réseaux de Petri dans le § 2, la modélisation du comportement dynamique de ces systèmes, dans l’algèbre des dioïdes, fera l’objet du § 3. Par la suite, le modèle mathématique établi sera utilisé dans les sections suivantes pour traiter deux problématiques :
-
évaluation de performances : correspond au calcul de certains indicateurs de performances des systèmes de production : le taux de production et le temps de cycle ;
-
allocation de ressources : consiste à optimiser l'allocation de certaines ressources, dans les systèmes de production (exp, optimisation des palettes, des chariots, des moyens de transports, des machines) dans le but d'atteindre des performances souhaitées.