L’océan est un milieu turbulent, sujet à des mouvements d’échelles spatiales et temporelles très variables, du millimètre à plusieurs milliers de kilomètres, de la seconde à plusieurs années. La panoplie d’instruments imaginés pour mesurer les paramètres de l’océanographie physique, pourtant peu nombreux, reflète cette diversité. La variété des solutions retenues traduit également l’extrême difficulté de la mesure dans un milieu hostile où les mouvements, la corrosion, les salissures, etc., sont autant d’entraves au bon fonctionnement d’un appareil [4].
Il n’est pas facile d’extraire de l’océan des données telles que la vitesse d’un courant, le niveau de la mer ou toute autre quantité physique. Pour pallier ces problèmes, les océanographes utilisent souvent une mesure indirecte. Mesurer la répartition de la densité permet, par l’équilibre des forces aux échelles considérées, d’accéder à une structure relative du champ de vitesse (c’est le principe de l’hydrologie). Le contenu en sel, la température ou tout autre traceur permettent souvent de visualiser l’écoulement des masses d’eaux depuis leur région de formation. Dans cet article, nous présenterons les traceurs chimiques les plus utilisés sans entrer dans le détail de leur analyse en laboratoire.
Si la compréhension des mécanismes de l’océan profond et de son interface avec l’atmosphère est essentielle pour la connaissance de l’évolution de l’environnement planétaire, les zones côtières posent un problème plus local mais toutefois primordial : 80 % de la population mondiale vit près des côtes et 80 % des captures de pêche y sont réalisées. La Défense nationale a également évalué l’intérêt de l’océanographie physique car la propagation du son dans l’océan est directement liée aux principales propriétés physiques de l’eau de mer. L’observation continue de la distribution des masses d’eau est donc un préalable à une bonne protection sous-marine.
Dans les années 70, les techniques de mesures directes de courant au point fixe sur des périodes assez longues (de l’ordre d’un an) montrèrent que l’énergie est répartie sur un spectre large de fréquences, avec une forte variabilité à l’échelle du mois. Plus récemment, les flotteurs subsurface dérivants ont à eux seuls livré toute la complexité de la circulation aussi bien en profondeur qu’en surface, et ont révélé son comportement extrêmement turbulent. La tomographie acoustique qui mesure la vitesse du son dans l’océan en trois dimensions a permis de vérifier l’hétérogénéité spatiale des propriétés physiques du volume d’océan ausculté.
Ces techniques, qui permettent d’accéder à la structure verticale de l’océan, nécessitent des expéditions en mer à bord de navires océanographiques. Les mesures hydrologiques sont effectuées le long du trajet du bateau. Elles sont complétées par des mesures de plus longues durées obtenues par des instruments mouillés en points fixes qui enregistrent des données et que l’on doit ensuite venir récupérer, et par des mesures effectuées à partir de bouées dérivantes de surface ou de flotteurs dérivants profonds. La préparation d’une campagne océanographique, sa réalisation et l’exploitation des résultats s’échelonnent sur au moins 5 ans.
Parallèlement à ces méthodes, on doit citer les observations satellitaires. Ces observations n’ont accès qu’aux paramètres de surface de l’océan (les ondes électromagnétiques ne pénètrent pas dans l’océan, d’où une grande difficulté de mesure par comparaison avec l’atmosphère). L’intérêt des satellites réside dans leur vue quasi-synoptique de la surface océanique mondiale.