Présentation
EnglishRÉSUMÉ
Cet article présente un ensemble de techniques de microscopie thermique à balayage (SThM) dédiées à l’imagerie thermique des surfaces, ainsi qu’à l’analyse de la température de surface, des propriétés thermophysiques de matériaux et des mécanismes physiques de transfert thermique aux échelles micro et nanométriques.
Il met l’accent sur l’une d’entre elles : la SThM à sonde résistive. La technique y est décrite en détails : son instrumentation et ses différents modes opératoires, les paramètres d’influence de la mesure, ainsi que les stratégies proposées pour réaliser des mesures thermiques localisées, y compris les méthodologies d’étalonnage des sondes.
Des conseils de bonne pratique sont donnés tout au long de l’article. Il est également question de présenter les principaux défis et les limites de la technique SThM, ainsi que les tendances actuelles pour son développement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Séverine GOMES : Directrice de Recherche CNRS Centre d’Énergétique et de Thermique de Lyon, Université de Lyon, CNRS, INSA Lyon, CETHIL, UMR5008, (France)
INTRODUCTION
Au cours des trente dernières années, les nanosciences et les nanotechnologies ont conduit à des besoins croissants de connaissance fondamentale en thermique et énergétique à des échelles de plus en plus petites, allant du micromètre au nanomètre. En particulier, le développement de nouveaux matériaux et systèmes dépend de progrès significatifs dans la compréhension du transport de l’énergie à ces échelles. Les activités technologiques et commerciales de nombreux secteurs industriels tels que les semi-conducteurs, l’aéronautique, l’aérospatiale et les technologies de l’information sont profondément concernées.
Des mesures thermiques précises à des échelles inférieures à 30 nm sont par exemple incontestablement nécessaires à la caractérisation et l’optimisation des propriétés des matériaux nanostructurés tels que les interphases et les super-réseaux (multicouches à l’échelle nanométrique), les matériaux nanoporeux, les nano-objets et les nanomatériaux tels que le graphène, les nanotubes de carbone ou les nanofils qui sont d’ores et déjà intégrés dans des composites et composants. Il s’agit également de mieux comprendre les mécanismes de défaillance dans les composants électroniques ou optoélectroniques dont la conception reste souvent basée sur des analyses théoriques sans vérification expérimentale appropriée. Ces mesures permettront par ailleurs d’améliorer la précision et la validité des outils de simulation pour les technologies ultra-intégrées.
Outre le transport d’énergie, tout phénomène impliquant des échanges d’énergie et d’entropie avec l’environnement, tels que les modifications des structures atomiques ou des domaines magnétiques, nécessite ou induit d’une certaine manière une dissipation de chaleur ou un refroidissement. Cela inclut les changements de phase et les réactions chimiques et biochimiques. L’analyse thermique à l’échelle nanométrique devrait permettre l’étude de ces phénomènes ultralocalisés.
Dans ce contexte, développées pour l’imagerie thermique, les mesures thermiques et l’étude des phénomènes de transport thermique aux micro et nanoéchelles, la technique SThM (Scanning Thermal Microscopy) est une méthode prometteuse. Elle est aujourd’hui une technique qui fait partie intégrante du paysage de la micro et de la nanothermique : sa résolution thermospatiale latérale peut être inférieure à 50 nm. Cette microscopie est basée sur le principe de mise en interaction en contact ou de proximité d’une sonde de très petite dimension avec l’objet à caractériser, la sonde et l’objet ayant une température différente.
Actuellement principalement basée sur l’AFM (Atomic Force Microscopy), elle bénéficie de ses capacités à positionner avec une très grande précision la sonde par rapport à la structure étudiée tout en contrôlant la force entre les deux objets. Le vecteur de l’information d’intérêt est le flux de chaleur échangée entre la pointe et l’échantillon, ce flux étant dépendant de la différence de température entre la sonde et l’échantillon, ainsi que des propriétés thermophysiques de ce dernier.
En SThM, la sonde AFM est donc non seulement utilisée comme un palpeur de force, mais également comme un détecteur de la quantité de chaleur échangée entre la sonde et l’échantillon. Si différents phénomènes physiques et/ou paramètres thermodépendants peuvent être exploités pour cette détection (couple électrique entre une pointe métallique et la surface électriquement conductrice de l’échantillon, dilatation de la surface de l’échantillon, effet bilame au niveau de la sonde AFM…), la sonde AFM en SThM est généralement équipée d’un capteur thermique à proximité ou à l’extrémité de sa pointe. On se focalise dans cet article sur les pointes intégrant un élément thermosensible résistif étant donné que ces sondes sont les plus utilisées.
Les instruments de SThM restent encore aujourd’hui essentiellement commercialisés comme des instruments d’imagerie des surfaces ; le contraste de l’image dite « thermique » donnant, soit une cartographie de l’échauffement en surface d’un échantillon actif (un point chaud en surface d’un composant électronique par exemple), soit une cartographie de la quantité de chaleur échangée entre la pointe résistive chauffée par effet Joule et l’échantillon initialement froid. Dans le second cas, l’image thermique peut refléter le contraste de la conductance thermique de la zone située immédiatement sous la surface de l’échantillon, laquelle dépend des propriétés du transport de chaleur au sein du volume de matériau sondé. Cette imagerie ne fournissant qu’une information qualitative sur l’état thermique de l’échantillon, elle reste souvent insuffisante dans le cadre de l’optimisation des fonctionnalités et des propriétés thermophysiques de systèmes et de matériaux du fait d’une interaction entre la pointe et l’échantillon très complexe.
La SThM est encore aujourd’hui l’objet de nombreux développements instrumentaux et méthodologiques ainsi que de recherches tant fondamentales qu’applicatives : une technique de mesure thermique aux nanoéchelles est visée. La première partie de cet article est dédiée à l’instrumentation et aux différents modes opératoires de cette microscopie. La seconde partie analyse les facteurs d’influence sur le signal mesuré et les méthodologies utilisées pour étalonner la technique afin de réaliser des mesures thermiques. Les défis ainsi que les tendances actuelles du développement de la SThM sont pour finir discutés.
MOTS-CLÉS
mesure Transfert thermique température étalonnage microscopie thermique à balayage imagerie thermique
VERSIONS
- Version archivée 1 de déc. 1996 par Georges LE PALEC, Daniel RONDOT
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Mesures mécaniques et dimensionnelles > Nanométrologie > Microscopie thermique à balayage (SThM)
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
BIBLIOGRAPHIE
-
(1) - WILLIAMS (C.), WICKRAMASINGHE (H.) - Scanning thermal profiler. - Applied Physics Letters, 49(23), p. 1587-1589 (1986).
-
(2) - BINNIG (G.), ROHRER (H.), GERBER (C.), WEIBEL (E.) - Surface studies by scanning tunneling microscopy. - Phys Rev Lett, 49, p. 57-61 (1982).
-
(3) - BINNIG (G.), QUATE (C.F.), GERBER (C.) - Atomic force microscope. - Phys Rev Lett, 56, p. 930-3 (1986).
-
(4) - GOMES (S.), ASSY (A.), CHAPUIS (P.O.) - Scanning thermal microscopy: A review. - Physica status solidi, (a). 212(3), p. 477-494 (2015).
-
(5) - DINWIDDIE (R.B.), PYLKKI (R.J.), WEST (P.E.) - Thermal conductivity contrast imaging with a scanning thermal microscope. - Thermal conductivity, 22, p. 1016 (1994).
-
(6) - ZHANG (Y.), DOBSON (P.S.), WEAVER (J M.R.) - High...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Organismes – Fédérations – Associations (liste non exhaustive)
Centre national de compétences en Nanosciences du CNRS, C’Nano – CNRS.
Laboratoire National de Métrologie et d’Essais, LNE.
Groupe De Recherche « NAnoMaterials for Energy applications » du CNRS, GDR NAME, Thèmes T2 : Propriétés de transport et A2 : Mesures/Métrologie.
https://gdrname.wordpress.com/themes-et-axes-du-gdr-name/
Institut de métrologie de république tchèque (Czech metrology institute, CMI).
HAUT DE PAGECet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive