Le concept des laboratoires sur puce date du début des années 1990, mais les développements fourmillent et bouleversent le secteur des biotechnologies à partir des années 2000 comme en témoigne l’évolution du nombre d’articles dont le sujet contient le mot-clé « microfluidics », qui désigne à la fois la science et la conception des laboratoires sur puce et dont au moins l’une des dimensions caractéristiques est de l’ordre de quelques dizaines de micromètres, dans la base de données Thomson ISI Web of Knowledge. Ce nombre d’articles est passé de 28 en 1998 à plus de 2 200 pour la seule année 2017 (étude réalisée en juillet 2018). Depuis, les laboratoires sur puce sont omniprésents dans de nombreux domaines : en médecine, dans l’énergie, dans la chimie verte, la cosmétique, l’industrie agroalimentaire…, mais quels sont les réels avantages de cette technologie pour la chimie ? Quelles sont leurs particularités ? Comment sont-ils développés ?
La microfluidique a suscité l’intérêt de l’industrie chimique motivée en grande partie par les applications en analyse, en synthèse ou pour l’intensification des processus. Par exemple, ces réductions d’échelles sont pertinentes dans le domaine nucléaire ou pour les industries fabriquant des produits toxiques ou explosifs car elles permettraient de :
-
diminuer la production de déchets (réactifs, consommables de laboratoire, solution de décontamination…) ;
-
automatiser des opérations unitaires de procédé chimique ;
-
diminuer l’exposition radiologique et chimique des personnels ;
-
diminuer les coûts (par exemple en transférant des analyses d’enceintes blindées en boîtes à gants).
Essentiellement mise en œuvre en physico-chimie des fluides complexes sur des systèmes fonctionnant dans des conditions proches de l’ambiante, la microfluidique présente aussi un intérêt pour mener des expérimentations dans des conditions plus sévères (haute pression, haute température), représentatives des conditions opératoires industrielles rencontrées dans diverses applications, qui vont de l’exploration/production du pétrole, en passant par le raffinage et la pétrochimie à la transformation de la biomasse, la synthèse de biocarburants…
Ce changement de paradigme dans la chimie organique permet d’améliorer :
-
la productivité ;
-
la sélectivité. Pour des réactions conduites en milieu biphasique, l’absence de mélange est mise à profit en fin de réaction : l’étape d’extraction et de purification des produits est supprimée, les produits se situent exclusivement dans l’une des deux phases.
-
le contrôle thermique lié au rapport surface/volume et à la possibilité de positionner des capteurs au plus près de la réaction ;
-
la gestion des risques.
Le criblage des conditions opératoires à haut débit intéresse aussi les chimistes quel que soit leur domaine. C’est pourquoi la microfluidique est devenue un instrument de choix pour tester des milliers de formulations de surfactants (pour un fabricant de shampoing, par exemple), de catalyseurs ou d’extractants pour l’hydrométallurgie et sélectionner les meilleurs candidats.
Alors que d’ordinaire la littérature décrit les laboratoires sur puce dédiés aux biotechnologies, le but des trois articles qui suivent est de sensibiliser le lecteur aux spécificités des laboratoires sur puce développés pour la chimie.
L’article [CHV 2 225] décrit les avantages et les inconvénients des laboratoires sur puce puis dresse l’état de l’art des microsystèmes développés spécifiquement pour des applications à la chimie séparative élémentaire (sels, métaux et radionucléides) et les caractérisations chimiques et physico-chimiques des processus. Enfin, leur apport à l’accélération de la recherche et développement fait l’objet de la dernière partie.
L’article [CHV 2 226] est centré sur la conception de ces laboratoires sur puce, avec notamment l’exposé des fonctions de base, le choix des matériaux. Les principes de fonctionnement des microsystèmes séparatifs précédemment décrits sont présentés de manière à comprendre la façon dont ils ont été dimensionnés.
L’article [CHV 2 227] est axé sur l’intensification obtenue par les microréacteurs utilisés pour la chimie fine, des exemples d’intensification de procédés industriels y sont présentés.
Les deux articles [CHV 1 010] et [BIO 7 150] constituent un complément d’information. L’article [CHV 1 010] concerne plus particulièrement le traitement de l’échantillon par des techniques miniaturisées mais pas nécessairement en laboratoire sur puce, ainsi que des techniques séparatives miniatures couplées à des techniques de détection pour des applications essentiellement biologiques.
Enfin, le lecteur pourra consulter l’article [BIO 7 150] qui est entièrement axé sur les biopuces et leurs applications au diagnostic médical et à l’analyse de l’ADN par amplification, des protéines, des sucres ou des cellules.