Dans le cadre du développement de produits et systèmes électroniques, la CEM représente un coût global qui doit être optimisé. Dans le secteur automobile, par exemple, alors que dans les années 1990 toute la contrainte CEM était ramenée au niveau de la carte électronique, cette situation a nécessairement évolué afin de répartir la contrainte CEM et d’optimiser en conséquence ces coûts. Le domaine de la CEM s’est ainsi étendu et développé au niveau des circuits intégrés. Être capable de caractériser leurs performances était la première étape, en permettant que la CEM devienne désormais un critère de sélection des composants. La seconde étape a été de développer des techniques de modélisation de ces composants, permettant de prédire les performances au niveau du produit/système.
Cet article, reprenant et mettant à jour les éléments publiés dans [E 2 475], comprend un approfondissement des notions de sources de bruit et de leur modélisation introduites dans [E 1 302]. L’évolution des technologies de fabrication vers les dimensions nanométriques est détaillée au paragraphe 1 du point de vue de différentes grandeurs physiques et électriques en lien direct avec la compatibilité électromagnétique (CEM) des composants. Nous dressons au paragraphe 2 un état de l’art des méthodes de mesure normalisées applicables aux composants, ainsi que des propositions de normes en matière de modélisation de l’émission et de l’immunité des circuits intégrés. Pour illustrer les aspects modélisation et simulation, nous détaillons aux paragraphes 3 et 4 des cas d’étude concernant l’émission conduite d’un microcontrôleur, l’émission rayonnée d’un amplificateur intégré, ainsi que l’immunité conduite d’un transistor discret et d’un régulateur de tension. L’étude de la susceptibilité présente aussi les notions de comportement « in-band », « out-band » et décrit les différents mécanismes de dégradation de comportement.