Le dimensionnement des machines électriques reste une étape essentielle lors de la réalisation d'un dispositif électromécanique. La puissance de calcul, la précision de l'analyse numérique des ordinateurs actuels, ainsi qu'une qualité visuelle de l'interface de travail sous des logiciels spécifiques ne peut jamais remplacer la démarche analytique en vue de la détermination des paramètres géométriques et électromagnétiques d'une machine électrique. Cette démarche analytique est basée sur deux approches possibles : le calcul du potentiel vecteur ou le réseau de réluctances.
La méthode du potentiel vecteur représente la base de l'électromagnétisme. Sa théorie a été démontrée par James Clerk MAXWELL, il y a plus de 150 ans. Toutes les approches numériques et les logiciels d'analyse par éléments finis sont basés sur ce type de calcul. Malgré sa précision, le calcul du potentiel vecteur reste une méthode analytique de dimensionnement exclusivement utilisée par des spécialistes, avec des expressions mathématiques très longues, avec un calcul des coefficients d'intégration très complexes où le risque d'erreur de calcul est très élevé et pour lequel la possibilité de simplification et d'adaptation à des structures similaires est très difficile (parfois impossible).
Le réseau de réluctances (ou de perméances) est la méthode classique dans l'électrotechnique pour le calcul et la caractérisation des circuits magnétiques. Cette approche est basée sur beaucoup de méthodes simplificatrices et certains paramètres sont ajustés empiriquement. Mais, pour un calcul plus fin, on peut rajouter des calculs itératifs (le calcul de la saturation, par exemple). Étant une méthode qui ne nécessite pas de calculs analytiques sophistiqués, cette approche est utile pour l'estimation des performances globales des dispositifs d'entraînement électromécaniques et c'est pourquoi elle est préférée par les concepteurs industriels.
Le présent travail est proposé pour l'environnement industriel comme un outil de dimensionnement rapide des machines électriques, en particulier pour les dispositifs électromécaniques excités par des aimants permanents. Les approches de dimensionnement sont diverses. La méthode proposée est basée sur le calcul par réseau de réluctances, à laquelle on ajoute des coefficients obtenus numériquement (par éléments finis) ou par mesures. On se propose donc de présenter une démarche analytique complète et facile à implémenter pour le dimensionnement des structures des machines synchrones à aimants permanents (MSAP).
Dans une partie introductive sont présentées quelques généralités sur les MSAP et leurs éléments constitutifs (point de fonctionnement de l'aimant, différents types de bobinage en fonction d'une application donnée, structures rotoriques usuelles excitées par des aimants permanents). Une démarche complète pour le dimensionnement rapide des MSAP est ensuite exposée (avec plusieurs topologies rotoriques, leurs paramètres géométriques et électromagnétiques, les caractéristiques de fonctionnement). Des procédures de détermination des autres paramètres de dimensionnement permettent les caractérisations thermique, mécanique et de l'investissement de la partie active de la machine. Une comparaison et un exemple d'étude à implémenter lors du dimensionnement rapide des MSAP permettent de conclure.