Cet article consacré aux arbres de défaillance (ADD) fait suite à l’article [SE 4052] qui en décrit l’histoire, le contexte booléen et les liens avec les autres approches mises en œuvre dans le domaine de la sûreté de fonctionnement. L’article [SE 4052] décrit en détail l’utilisation des ADD comme outil d’analyse qualitative, ainsi que les bases mathématiques des calculs probabilistes liés à la défaillance du système modélisé. L’ADD représente une fonction logique statique (c’est-à-dire où le temps n’intervient pas) qui permet essentiellement de calculer, avec des probabilités constantes, la probabilité de panne du système modélisé en fonction des probabilités de panne de ses composants.
Cependant, lorsque les composants évoluent indépendamment les uns des autres au cours du temps, il est tout de même possible, dans une certaine mesure, de prendre en compte certains aspects temporels avec cette approche. Ceci est l’objet de cet article qui explique comment l’ADD permet de calculer facilement l’indisponibilité, U(t), du système modélisé en fonction des indisponibilités de ses composants, Ui(t). Il explique aussi comment l’ADD permet, mais avec des calculs plus compliqués, d’obtenir la fréquence de défaillance, w(t) et la défiabilité, F(t), du système étudié (probabilité d’observer une panne sur la durée [0, t]). Le calcul par ADD de la défiabilité, F(t), n’est généralement pas possible sans approximation.
Ces calculs ont pendant longtemps été limités par la taille des ADD considérés, la puissance des ordinateurs disponibles et la faible efficacité des algorithmes utilisés en présence d’éléments répétés plusieurs fois dans les modèles. Ces limitations ont été levées depuis la mise œuvre des diagrammes de décision binaires (DDB). Cela a d’abord été mis à profit dans le cas statique [SE 4052], puis pour l’introduction des aspects temporels et l’utilisation de la simulation de Monte Carlo pour évaluer l’impact des incertitudes sur les données d’entrée des ADD. Ces derniers points font l’objet de cet article.
Lorsque les probabilités de défaillance des composants évoluent en fonction du temps, les ADD peuvent être utilisés pour combiner des processus de Markov ( [SE 4071]) ou des réseaux de Petri stochastiques (, [SE 4072], [SE 4073]). Cela conduit aux processus de Markov pilotés par ADD et aux réseaux de Petri pilotés par ADD. Dans ce cas, le comportement des composants est modélisé par des processus de Markov (respectivement réseaux de Petri) individuels, indépendants les uns des autres, et la logique de combinaison est fournie par l’ADD.
Lorsque les composants ne sont pas indépendants, les ADD peuvent être étendus aux ADD dynamiques (ADDD). Dans les cas simples, cela peut être couvert par les processus de Markov pilotés par ADD mais, dans le cas général, le traitement analytique doit être abandonné au profit de la simulation de Monte Carlo et les réseaux de Petri pilotés par ADD peuvent être utilisés à cet effet. Dans ce cas, il est possible de traiter des composants/systèmes/fonctions à plus de deux états et sortir du strict contexte booléen et de la logique classique.
Les divers aspects évoqués ci-dessus sont illustrés par des exemples pédagogiques.