Les techniques électroanalytiques font intervenir essentiellement trois grandeurs (ou une fonction qui en dérive, par exemple l’impédance électrochi-mique) qui sont le courant i, le potentiel E et le temps t. Etymologiquement, la chronopotentiométrie est une mesure du potentiel E en fonction du temps t. Cependant, d’après les recommandations de l’IUPAC (International union of pure and applied chemistry), elle se limite aux techniques pour lesquelles :
-
d’une part, le signal d’excitation i est constant ou variable avec le temps t (tout au moins lors d’une première impulsion dans le cas de trains d’impulsions) et non nul (ce qui implique au moins une réaction électrochimique) ;
-
et d’autre part, le transfert de matière est assuré par la seule diffusion.
Ceci exclut les techniques de potentiométrie et de titrages potentiométriques à courant nul, et à courant constant en cas de régime de diffusion forcée (agitation de la solution).
Dans le cas considéré, c’est-à-dire dans celui de l’existence d’une réaction électrochimique en régime de diffusion pure, la modification transitoire des espèces électro-actives qui en résulte entraîne une variation temporelle de la réponse à toute excitation électrique appliquée à l’électrode indicatrice.
Il est possible – comme l’a montré précédemment Reinmuth [4] – de visualiser en trois dimensions cet aspect. La figure 1 fournit en effet la relation qui existe entre les trois grandeurs fondamentales : courant i, tension E et temps t (ce diagramme a été tracé dans le cas général d’un système électrochimique rapide correspondant à la réduction d’une espèce oxydante – Ox – soluble en une autre espèce soluble). Elle permet de faire la liaison entre les différentes techniques électrochimiques faisant intervenir un signal d’excitation monotone.
C’est ainsi par exemple que la chronopotentiométrie à courant constant conduit à des réponses E = f(t) – appelées chronopotentiogrammes – obtenues par l’intersection de la surface (en bleu sur la figure 1) par un plan horizontal. Ces chronopotentiogrammes sont indiqués en pointillés, et projetés sur le plan tension-temps, sur lequel on met en évidence l’existence du « temps de transition » τ (cf. § 1.2, équation [10]).
Une intersection de cette surface par un plan parallèle au plan courant-tension (plan vertical) définit les réponses obtenues en voltamétrie à échantillonnage du courant (à temps constant), tout à fait analogues aux courbes courant-tension obtenues en régime de diffusion convective (voltamétrie). Les réponses relatives à la voltamétrie à balayage linéaire (i = f(t)) s’obtiennent par l’intersection de la surface (i, E, t) par un plan oblique dont l’angle avec le plan courant-tension définit la vitesse de variation de la tension. D’une façon analogue, la chronopotentiométrie à variation linéaire du courant fournit des chronopotentiogrammes dont l’allure est fournie par l’intersection de la surface (i, E, t) par un plan oblique dont l’angle avec le plan courant-tension définit la vitesse de variation du courant.
Nous verrons dans le paragraphe 1 que les signaux d’excitation peuvent être cycliques ou périodiques. Dans le cas de signaux périodiques rapides, la technique de chronopotentiométrie est alors à rapprocher de celle de la spectroscopie d’impédance à courant alternatif imposé.
Enfin, la chronopotentiométrie est à comparer aux techniques coulostatiques qui font appel à une intégration du courant, ces techniques étant souvent mêlées dans le cas d’applications particulières comme nous le verrons aux paragraphes 2.4 et 2.5.